Supporting Information

A new dual-ion hybrid energy storage system with energy density comparable to ternary lithium ion batteries

Shenggong He^{1†}, Shaofeng Wang¹, Hedong Chen^{1†}, Xianhua Hou^{1*}, and Zongping Shao^{2,3*}

¹Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong Engineering Technology Research Center of Efficient Green Energy and Environment Protection Materials, Engineering Research Center of MTEES (Ministry of Education), School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China; ²Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009, china;

³WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, WA, 6845 Australia;

E-mail: houxianhua@m.scnu.edu.cn (X.H. Hou); Shaozp@njtech.edu.cn (Z.P. Shao)

Scheme 1. Synthesis of nano silicon by radio frequency induction plasma technology.

Scheme 2. Graphic diagram of the synthesis process for Si/C composite.

Figure S1. TG profiles of Si/C.

Figure S2. (a) EG and AC samples show two different type of nitrogen absorptiondesorption isotherms, suggesting plate-like structure of EG and macroporous channels of AC, and the BET surface area are 90.2 m² g⁻¹ and 1768 m² g⁻¹, respectively. (b,c) The pore volume of EG and AC is 0.110 and 0.761 cm³ g⁻¹, respectively.

Figure S3. (a) Charge-discharge curves of AC cathode at 3-4.6 V under different current rates. (b) Rate performance for the EG and AC cathode. (c) The long-term cycling performance of the EG and AC cathode at 100 mA g^{-1} . d) Ragone plots of EG and AC cathodes normalized by the mass of cathode.

Figure S4. Electrochemical characterization of EG and AC cathode, CV curves for AC

and EG cathode at 0.8 mV	s ⁻¹ .
--------------------------	-------------------

Figure S5. Log(i) vs log(v) plots to determine the value of each redox peak for EG cathode.

Figure S6. Schematic illustration for various stages of EG intercalation compounds.

Note S1: Energy density and power density calculation of EG and AC cathodes.

The specific energy ($E_{cathode}$; Wh/kg) of cathode was calculated by $E_{cathode} = C_{cathode} * V_m$; $C_{cathode}$ (mAh/g) is the discharge capacity of cathode in half cell at various current densities, and V_m (V) is the midpoint discharge voltage obtained from the discharge curves.

The specific power (P_{cathode}; W/kg) of cathode can be estimated as

 $P_{cathode} = E_{cathode} / t$; t is the discharging time (h).

Current density	0.1	0.2	0.4	0.8	1	1.6
(A g ⁻¹)						
C _{EG} (mAh g ⁻¹)	101.3	95.1	89.0	83.8	81.7	76.5
Energy density (W kg ⁻¹)	462.9	435.5	415.7	390.9	380.7	356.5
Power density (Wh kg ⁻¹)	403	822	1663	3257	4759	7130

Table S1. Energy and power density of EG cathodes.

Current density	0.1	0.2	0.4	0.8	1	1.6
(A g ⁻¹)						
C _{AC}	60.9	54.7	48.0	43.6	40.7	36.9
(mAh g ⁻¹)						
Energy density	232.2	208.4	181.4	165.5	153.1	138.5
(W kg ⁻¹)						
Power density	387	695	1209	2758	3826	6925
(Wh kg ⁻¹)						

Table S2. Energy and power density of AC cathodes.

Note S2: Energy density and power density calculation of dual-ion hybird devices (Si/C//EG).

The discharge capacity $C_{cathode}$ (based on EG mass in cathode) and V_m of dual-ion hybird devices (Si/C//EG) can be obtained from the discharge curves at different current rates. The cell capacity can be obtained by

 $C_{ell} = C_{cathode} \times m_{cathode} / (m_{cathode} + m_{anode} + m_{electrolyte}).$

The energy density of full cells can be simplified as

 $E_{cell} = C_{ell} \times V_m;$

The power density of the full cells can be estimated as

 $P_{cell} = E_{cell} / t$; t is the discharging time (h).

Current density	0.1	0.2	0.4	0.8	1	1.6
(A g ⁻¹)						
C _{EG}	109.8	106.6	101.7	96.4	93.2	88.9
(mAh g ⁻¹)						
CLDIPC	60.2	58.5	55.8	52.9	51.1	48.8
(mAh g ⁻¹)						
Energy density	252.0	244.6	234.5	231.3	228.9	222.6
(W kg ⁻¹)						
Power density	215	445	938	1928	2861	5420
(Wh kg ⁻¹)						

Table S3. Energy and power density of dual-ion hybird devices (Si/C//EG).

Materials	Voltage	Energy	Power	Cycling	Ref.
(anode//cathode)	Window (V)	density	density	stability	
Ni-MDH//N-C	0.0-1.7	81	1900	91.3%, 10000	1
		Wh kg ⁻¹	W kg ⁻¹	cycles	
MoPO/EG//MnO	0.0-2.7	89.2	2733	Nearly no fading	2
_x /EG		Wh kg ⁻¹	W kg ⁻¹	100000 cycles	
NiCo ₂ Al-	0.0-1.5	44	462	91.2%, 15000	3
LDH//ZPC		Wh kg ⁻¹	W kg ⁻¹	cycles	
Fe ₃ O ₄ /RGO//RG	1.0-4.0	147	150	70%, 10000	4
О		Wh kg ⁻¹	W kg ⁻¹	cycles	
BNC//BNC	0.02-4.5	220	225	81%, 5000	5
		Wh kg ⁻¹	W kg ⁻¹	cycles	
Si/C//RAC	0.02-4.0	227	1146	Nearly no fading	6
		Wh kg ⁻¹	W kg ⁻¹	16000 cycles	
Zn _x Co _{1-x} O//	0.0-1.45	67.3	1670	90.7%, 5000	7
Zn _x Co _{1-x} O		Wh kg ⁻¹	W kg ⁻¹	cycles	
VN-RGO//APDC	0.0-4.0	162	200	83%, 1000	8
		Wh kg ⁻¹	W kg ⁻¹	cycles	
Al//G	0.5-2.25	40	3000	Nearly no fading	9
		Wh kg ⁻¹	W kg ⁻¹	7500 cycles	
G//G	0.0-5.0	233	220	96.1%, 1400	10
		Wh kg ⁻¹	W kg ⁻¹	cycles	
Si/C//EG	0.0-5.0	252	215	90.9%, 1000	This
		Wh kg ⁻¹	W kg ⁻¹	cycles	work

Table S4. Comparison of the electrochemical properties between the present dual-ionhybird devices (Si/C//EG) and previously SCs, LICs, pseudocapacitors and DIB.

Potential	2θ _(00n) /°	$2\theta_{(00n+1)}/^{\circ}$	n	Stage x	ĸ I _c /Å	d _i /Å	∆d/Å	$\Delta \mathbf{c}$
4.55V	25.150	30.014	5	4	17.690	7.307	3.846	27.8%
4.60V	24.897	31.015	4	3	14.294	7.372	3.911	37.7%
4.86V	24.226	32.301	3	2	11.013	7.552	4.091	59.1%
5.0V	23.207	34.246	2	1	7.659	7.659	4.198	121.2%
4.77V	24.211	32.381	3	2	11.019	7.558	4.097	59.2%
4.32V	24.874	30.916	4	3	14.307	7.385	3.924	37.8%

Table S5. Crystal structure of EG cathodes at different charge states.

 d_{00n} is the spacing of the (00n) plane, I_c is periodic repeat distance, **n** is the Miller indices, λ is the X-ray wavelength (1.540598 Å); θ_{00n} and θ_{00n+1} are the measured Bragg

angle of (00n) and (00n+1) peaks, \mathbf{x} is the Stage integer, \mathbf{d}_i is the intercalant gallery

height, $\Delta \mathbf{d}$ is the gallery expansion, $\Delta \mathbf{c}$ is the percent expansion.

References

1. Qu, C.; Zhao, B.; Jiao, Y.; Chen, D.; Dai, S.; deglee, B. M.; Chen, Y.; Walton, K. S.; Zou, R.; Liu, M., Functionalized Bimetallic Hydroxides Derived from Metal–Organic Frameworks for High-Performance Hybrid Supercapacitor with Exceptional Cycling Stability. *ACS Energy Letters* **2017**, *2* (6), 1263-1269.

2. Song, Y.; Deng, P.; Qin, Z.; Feng, D.; Guo, D.; Sun, X.; Liu, X.-X., A polyanionic molybdenophosphate anode for a 2.7 V aqueous pseudocapacitor. *Nano Energy* **2019**, *65*, 104010.

3. Gao, X.; Liu, X.; Wu, D.; Qian, B.; Kou, Z.; Pan, Z.; Pang, Y.; Miao, L.; Wang, J., Significant Role of Al in Ternary Layered Double Hydroxides for Enhancing Electrochemical Performance of Flexible Asymmetric Supercapacitor. *Advanced Functional Materials* **2019**, *29* (36), 1903879.

4. Zhang, F.; Zhang, T.; Yang, X.; Zhang, L.; Leng, K.; Huang, Y.; Chen, Y., A highperformance supercapacitor-battery hybrid energy storage device based on grapheneenhanced electrode materials with ultrahigh energy density. *Energy & Environmental Science* **2013**, *6* (5), 1623-1632.

5. Xia, Q.; Yang, H.; Wang, M.; Yang, M.; Guo, Q.; Wan, L.; Xia, H.; Yu, Y., High Energy and High Power Lithium-Ion Capacitors Based on Boron and Nitrogen Dual-Doped 3D Carbon Nanofibers as Both Cathode and Anode. *Advanced Energy Materials* **2017**, *7* (22), 1701336.

6. Li, B.; Xiao, Z.; Chen, M.; Huang, Z.; Tie, X.; Zai, J.; Qian, X., Rice husk-derived hybrid lithium-ion capacitors with ultra-high energy. *Journal of Materials Chemistry A* **2017**, *5* (46), 24502-24507.

7. Ling, T.; Da, P.; Zheng, X.; Ge, B.; Hu, Z.; Wu, M.; Du, X. W.; Hu, W. B.; Jaroniec, M.; Qiao, S. Z., Atomic-level structure engineering of metal oxides for high-rate oxygen intercalation pseudocapacitance. *Sci Adv* **2018**, *4* (10), eaau6261.

8. Wang, R.; Lang, J.; Zhang, P.; Lin, Z.; Yan, X., Fast and Large Lithium Storage in 3D Porous VN Nanowires-Graphene Composite as a Superior Anode Toward High-Performance Hybrid Supercapacitors. *Advanced Functional Materials* **2015**, *25* (15), 2270-2278.

9. Lin, M. C.; Gong, M.; Lu, B.; Wu, Y.; Wang, D. Y.; Guan, M.; Angell, M.; Chen, C.; Yang, J.; Hwang, B. J.; Dai, H., An ultrafast rechargeable aluminium-ion battery. *Nature* **2015**, *520* (7547), 325-8.

10. Wang, G.; Oswald, S.; Loffler, M.; Mullen, K.; Feng, X., Beyond Activated Carbon: Graphite-Cathode-Derived Li-Ion Pseudocapacitors with High Energy and High Power Densities. *Adv Mater* **2019**, *31* (14), e1807712.