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1. General Procedures and Materials.

All starting reagents and solvents were purchased from commercial companies and used without
further purification. Among them, nickel(Il) chloride hexahydrate (NiCl,-6H,O, CAS: 7791-20-0,
98%) was purchased from Energy Chemical, 1,4-diazabicyclo [2.2.2] octane (ted, CAS: 280-57-9,
98%) was purchased from Tokyo Chemical Industry, 1,4-naphthalenedicarboxylic acid (H,ndc, CAS:
605-70-9, 98%) was purchased from Alfa Aesar, 9,10-anthracenedicarboxylic acid (Hadc, CAS:
73016-08-7, 95%) was purchased from Sigma-Aldrich. Thermogravimetric analyses (TGA) were
examined by using a Netzsch TG209F3 under N, atmosphere with a heating rate of 5 K min.
Powder X-ray diffraction (PXRD) patterns were collected in the 26 = 2-45° range on an X Pert PRO

diffractometer with Cu Ka (A = 1.542 A) radiation at room temperature.

2. Powder X-ray Crystallography.

Attempts to obtain single crystals of ZJU-121 for single-crystal X-ray diffraction measurement
were not successful. We thus relied on powder X-ray diffraction (PXRD) to confirm the high purity
of the powder sample and to simulate the crystallographic structure. The PXRD measurements were
performed on a Rigaku Ultima IV diffractometer, operated at 40 kV and 44 mA and CuKa radiation
(L =1.5406 A). Data were collected at room temperature in the 20 range of 2-45° with a step size of
1.0°. We first indexed the PXRD pattern and used a triclinic P/ space group to build the model of
ZJU-121. Here we chose the low P/ setting in order to build an ordered structure in a less oblique
unit cell and to show the channel pore structure more clearly. Then, based on the framework
connection of ZJU-120, we built a crystal structure model for ZJU-121. The anthracene groups were
modeled as fully ordered in the structure and the orientation of anthracene rings was optimized. In
reality, there might exist some orientational disorder associated with the anthracene groups. As
shown in Fig. S3, the simulated PXRD pattern of our structural model agrees excellently with the

experimental data, strongly supporting its validity.

3. Fitting of pure component isotherms.
The experimentally measured loadings for C;Hg and C,H4 measured at temperatures of 273 K and
296 K in ZJU-120a, Ni(bdc)(ted)ys and ZJU-121a were fitted with the dual-Langmuir-Freundlich

1sotherm model
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The parameters are provided in Table S2, S3 and S4.

4. Virial Graph Analysis.

Estimation of the isosteric heats of gas adsorption (QOst)

A virial-type expression of comprising the temperature-independent parameters a: and b, was
employed to calculate the enthalpies of adsorption for C,Hs and C,Hy (at 273 K and 296 K) on ZJU-
120a, Ni(bdc)(ted)o s and ZJU-121a. In each case, the data were fitted use equation:

InP=InN+1/TY a,N,+> b.N, 3)

i=0 /=0

Here, P is the pressure expressed in mmHg, N is the amount absorbed in mmol g, T is the
temperature in K, a: and b; are virial coefficients, and m, n represent the number of coefficients
required to adequately describe the isotherms (m and n were gradually increased till the contribution
of extra added @ and b coefficients was deemed to be statistically insignificant towards the overall fit.
And the average value of the squared deviations from the experimental values was minimized). The
values of the virial coefficients ao through a» were then used to calculate the isosteric heat of

absorption using the following expression:
0, = _RzaiNi 4)

Ost 1s the coverage-dependent isosteric heat of adsorption and R is the universal gas constant. The
heat enthalpy of C,H¢ and C,H, sorption for complex ZJU-120a, Ni(bdc)(ted)ys and ZJU-121a in
this manuscript are determined by using the sorption data measured in the pressure range from 0-1

bar (at 273 K and 296 K).
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5. IAST calculations.

The adsorption selectivity is defined by

Sads = ql /q2 (5)
pl/pz

In equation (5), ¢; and ¢, are the molar loadings in the adsorbed phase in equilibrium with the bulk

gas phase with partial pressures p;, and p,.
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Notation

ba Langmuir-Freundlich constant for species i at adsorption site A, Pa™"*
bg Langmuir-Freundlich constant for species i at adsorption site B, Pa™"*
G molar concentration of species i in gas mixture, mol m-3

Cio molar concentration of species i in gas mixture at inlet to adsorber, mol m-
E energy parameter, J mol-!

Di partial pressure of species i in mixture, Pa

Dt total system pressure, Pa

qi component molar loading of species i, mol kg!

O« isosteric heat of adsorption, J mol!

T absolute temperature, K

Greek letters

V[ Freundlich exponent, dimensionless

Pl framework density, kg m-3

Subscripts

i referring to component i

t referring to total mixture
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Table S1. Lattice parameters of the crystal structure of ZJU-120.

Unit cell parameters ZJU-120
Formula C5HoNNiOy4
Formula weight 328.97
Crystal system tetragonal
Space group P4/mmm
a,b(A) 10.8865(8)
c(A) 9.3470(8)
a(°) 90.00
L) 90.00
7(°) 90.00
v (A3%) 1107.78(18)
VA 2
Deaieq (g cm) 0.986
CCcDC 1953742

Table S2. Dual-Langmuir-Freundlich parameter fits for C,Hs and C,H4 in ZJU-120a. The fits are

based on experimental isotherm data at 296 K.

Site A Site B
g A sat bao Va 9B sat bgo VB
mol kg'! kPa” vA dimensionless mol kg'! kPa~ vB dimensionless
C,Hg 5.87938 0.07139 0.92421 0.40678 5.92081x10- 3.03253
C,Hy 3.32789 0.04805 1.02858 1.38086 0.00213 1.65896

Table S3. Dual-Langmuir-Freundlich parameter fits for C,Hs and C,H, in Ni(bdc)(ted)ys. The fits
are based on experimental isotherm data at 296 K.

Site A Site B
g A sat bao VA 9B sat bgo VB
mol kg-! KPa~"4 dimensionless mol kg! KPa~"B dimensionless
C,Hg¢ 1.10205 0.03557 1.11979 6.66668 3.61249x10+ 1.83576
C,Hy 2.6595 0.01054 1.04208 3.62703 1.27952x104 1.90462
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Table S4. Dual-Langmuir-Freundlich parameter fits for C;Hgs and C,H, in ZJU-121a. The fits are
based on experimental isotherm data at 296 K.

Site A Site B
qAsat bao Va qB,sat bgo B
mol kg'! kPa” vA dimensionless mol kg'! kPa~ vB dimensionless
C,Hg¢ 2.45615 0.81988 1.05855 3.06365 0.00481 0.88053
C,Hy 2.19951 0.41281 1.07426 11.32815 0.00909 0.52004

Table S5. Comparison of the C,Hg adsorption capacity and C,H¢/C,Hy selectivity of ZJU-120a with
other best-performing materials at room temperature.

C,Hg adsorption uptake  C,H, adsorption
;.56 bar . l.Opbar 2 jlptak;f CzHG/.C%H‘t CoHs O T (K) Ref.
(mmol g'") (mmol g') 1.0 bar (mmol g') selectivity” (kI mol)

ZJU-120a 4.29 491 3.93 2.74 27.6 296 This work
ZJU-121a 2.81 3.1 3.19 1.51 47.1 296 This work
Ni(bdc)(ted)q s 2.95 5.13 3.4 1.8 21.1 298 1
Fe,(0,)(dobdc) 3.04 3.29 2.54 44 66.8 298 2
Cu(Qc), 1.3 1.85 0.78 3.45 30 298 3
MAF-49 1.7 1.71 1.7 2.7 61 298 4
Ui0-66-2CF; 0.6 0.88 0.5 2.54 14.5 298 5
ZIF-4 2.23 2.3 2.2 2.15 - 293 6
Ni(TMBDC)(
DABCO)0 s 5 5.44 5 1.98¢ 39.6 298 7
MUF-15 3.92 4.67 4.17 1.96 29.2 293 8
ZIF-8 1.43 2.54 1.43 1.8 17.2 293 9
PCN-245 1.94 3.31 2.4 1.8 22.8 298 10
IRMOF-8 2.5 4.2 2.8 1.7 52.5 298 11
MIL-142A 2.29 3.84 2.9 1.51 27.2 298 12
ZIF-7 1.82 2 1.9 1.5 - 298 13
MIL-53(Al) 1.53 2.05 1.69 1.3 22.2 323 14

@ Adsorption uptake obtained from single-component gas adsorption isotherms

b Selectivity is calculated by IAST for an equimolar mixture at 1 bar

¢ Selectivity is for a 1/15 mixture

4 Oy values at zero coverage
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Figure S1. Experimental PXRD patterns of as-synthesized Ni(bdc)(ted)ys (black), ZJU-120 (red)
and ZJU-121 (blue), all of which match well with each other.

M | ZJU-120 simulated

ZJU-120 as-synthesized

Relative intensity
C
Ib

Jl A ZJU-120 activated

10 20 30 40
206 (°)
Figure S2. The simulated XRD pattern from the crystal of ZJU-120 (black) and PXRD patterns of
as-synthesized ZJU-120 (red), activated ZJU-120 (blue).
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Figure S3. The calculated XRD pattern from the model structure of ZJU-121 (black) and PXRD
patterns of as-synthesized ZJU-121 (red), activated ZJU-121 (blue). The simulated PXRD pattern of
our structural model agrees excellently with the experimental data, strongly supporting its validity.
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Figure S4. PXRD patterns of as-synthesized ZJU-120 (black), the sample exposed to air for 1 month
(red) and exposed to 60% humidity (blue), indicating its good stability.
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Figure S5. PXRD patterns of as-synthesized ZJU-121 (black), the sample exposed to air for 1 month
(red) and exposed to 60% humidity (blue), indicating its good stability.
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Figure S6. PXRD patterns of as-synthesized ZJU-120 (red), the sample in water for 30 min (blue)
and 1 h (pink), indicating its certain water stability.
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Figure S7. PXRD patterns of as-synthesized ZJU-121 (red), the sample in water for 1 h (blue), 3 h
(pink) and 4 h (yellow), indicating its certain water stability.
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Figure S8. Variable-temperature PXRD patterns for ZJU-120.
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Figure S9. Variable-temperature PXRD patterns for ZJU-121.
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Figure S10. TGA curve of as-synthesized ZJU-120.
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Figure S11. TGA curve of as-synthesized ZJU-121.
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Figure S12. Nitrogen isotherm at 77 K with consistency and BET plots for the activated
Ni(bdc)(ted)q s sample.
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Figure S13. Nitrogen isotherm at 77 K with consistency and BET plots for the activated ZJU-120a

sample.
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Figure S14. Nitrogen isotherm at 77 K with consistency and BET plots for the activated ZJU-121a
sample.
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Figure S15. Adsorption isotherms of C,Hg (black) and C,H, (red) for ZJU-120a at 273 K up to 1 bar.
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Figure S16. Adsorption isotherms of C,Hg (black) and C,H, (red) for ZJU-121a at 296 K up to 1 bar.
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Figure S17. Adsorption isotherms of C,Hg (black) and C,H, (red) for ZJU-121a at 273 K up to 1 bar.
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Figure S18. Predicted mixture adsorption isotherms and selectivity of ZJU-120a predicted by the

IAST method for a 50/50 (v/v) C,H¢/C,H4 mixture at 296 K.

S16



4 43.0
Selectivity ]
d 2.9
@
S 3F e @ 1
g /o/ =
(&]
£, o {15
~ B [
(7] 0/ (72]
2 —
© 41.0 @
34l <
= s D b ° * “ 05
0 . 1 . 1 . 1 . A . 100
0.0 0.2 04 0.6 0.8 1.0

Total pressure (bar)

Figure S19. Predicted mixture adsorption isotherms and selectivity of ZJU-120a predicted by the
IAST method for a 10/90 (v/v) C,H¢/C,H4 mixture at 296 K.
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Figure S20. Comparison of C,Hg uptake for ZJU-120a and other best-performing materials at 1 bar.
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Figure S21. Heats of adsorption (Qy) of C;Hg (black) and C,H, (red) for ZJU-120a.
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Figure S22. Virial fitting of the C,H; adsorption isotherms for ZJU-120a.
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Figure S23. Virial fitting of the C,H,4 adsorption isotherms for ZJU-120a.
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Figure S24. Heats of adsorption (Qy) of C,Hg (black) and C,H, (red) for Ni(bdc)(ted)o s.
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Figure S25. Virial fitting of the C,Hg adsorption isotherms for Ni(bdc)(ted)o s.
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Figure S26. Virial fitting of the C,H,4 adsorption isotherms for Ni(bdc)(ted)q s.
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Figure S27. Heats of adsorption (Qy) of C,H¢ (black) and C,H, (red) for ZJU-121a,
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Figure S28. Virial fitting of the C,H; adsorption isotherms for ZJU-121a.
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Figure S29. Virial fitting of the C,H,4 adsorption isotherms for ZJU-121a.

Figure S30. The optimal C,H, adsorption site in Ni(bdc)(ted)y s obtained from DFT-D calculations.

Colour code: Ni (green), O (red), N (blue), C (grey), and H (white).
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Figure S31. The optimal C,H¢ adsorption site in ZJU-120a (along c axis) obtained from DFT-D

calculations. Colour code: Ni (green), O (red), N (blue), C (grey), and H (white).

Figure S32. The optimal C,H, adsorption site in ZJU-120a (along ¢ axis) obtained from DFT-D

calculations. Colour code: Ni (green), O (red), N (blue), C (grey), and H (white).
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Figure S33. Comparison of C,Hg adsorption isotherms at 296 K of ZJU-120a (black) and the re-
activated sample after the exposure to air (red) for one month, confirming its good chemical stability.
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