## Efficient Polysulfide Trapper of Nitrogen and Nickel Decorating Amylum Scaffold coated Separator for Ultrahigh Performance

## Lithium-Sulfur Batteries

Yinze Zuo<sup>a,b</sup>, Meng Zhao<sup>a,b</sup>, Peijia Ren<sup>a,b</sup>, Weiming Su<sup>a,b</sup>, Jian Zhou<sup>a,b</sup>, Yanbin Chen<sup>b,d</sup>, Yuefeng

Tang<sup>*a,b,c*\*</sup> and Yanfeng Chen<sup>*a,b*</sup>

<sup>a</sup>National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing, China.
<sup>b</sup>Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China.
<sup>c</sup>SuZhou Sun Sources Nano Science and Technology Co. Ltd., ChangShu, SuZhou 215513, China
<sup>d</sup>School of Physics, Nanjing University, Nanjing, China.
\*E-mail: yftang@nju.edu.cn

$$5nNiCl_{2}(s) + (C_{6}H_{5}O_{5})_{n}(s) \rightarrow 5nNiO(s) + 10nHCl(g) + 6nC(s)$$
(1)

$$NiO(s) + C(s) \rightarrow C'(s) + Ni(s) + CO(g)$$
 (2)

$$CO(g) + NiO(s) \rightarrow Ni(s) + CO_2(g)$$
 (3)

Fig. S1. The involved plausible reactions between NiCl<sub>2</sub>·6H<sub>2</sub>O and amylum



**Fig. S2.** (a) XPS analysis of AC/Ni/N composites and high-resolution spectrum of (b)O 1s; (c)C 1s; (d)N 1s; and (e)Ni 2p; respectively.



Fig. S3. The pore size distributions of AC/N and AC/Ni/N hybrids.



Fig. S4. SEM images of pristine separator.



Fig. S5. Contact angle measurements of (a) pristine separator; and (b) AC/Ni/N coated separator for the electrolyte.



Fig. S6. Capacity optimization of Ni content in the AC/Ni/N hybrids.



Fig. S7. The cycle performance of the cell of AC/Ni and AC/Ni/N modified separator.



Fig. S8. Nyquist plots of cells with AC/N and AC/Ni/N modified separator after cycling at 1.5C.



**Fig. S9.** Permeation experiments with an H-type permeation device with (a, b) a pristine separator; and (c, d) an AC/Ni/N coated separator after 24 h.



Fig. S10. XRD patterns of AC/Ni/N coated separator after cycling and standard XRD patterns sulfur and Li2S powder.



Fig. S11 (a) High-resolution XPS spectra for Ni 2p and (b) N 1s before and after cycling.

**Table S1**. The impedance parameters simulated from the equivalent circuit fitting of different cells

| Sample                               | $R_o(\Omega)$ | $R_{ct}(\Omega)$ |
|--------------------------------------|---------------|------------------|
| Cell with AC/Ni/N modified separator | 2.05          | 53               |
| Cell with AC/N modified separator    | 3.20          | 115              |

| Coating or interlayer | Sulfur<br>loading | Sulfur<br>content | Cathode   | Discharge<br>Capacity                      | Areal<br>capacity<br>(mAh cm <sup>-2</sup> ) | E/S ratio | Ref          |
|-----------------------|-------------------|-------------------|-----------|--------------------------------------------|----------------------------------------------|-----------|--------------|
| MoO <sub>3</sub> @CNT | 1.0               | 60%               | Super P/S | ~755 mAh g <sup>-1</sup> ,                 | <2.0                                         | N/A       | <b>S</b> 1   |
| EUC-CNF               | 1.5               | 70%               | Super P/S | 1038 mAh g <sup>-1</sup> ,<br>50th, 0.2 C  | <2.0                                         | N/A       | S2           |
| SSNS/CNT              | 1.0               | 65%               | KB/S      | 680 mAh g <sup>-1</sup> ,<br>100th, 0.2 C  | <2.0                                         | N/A       | S3           |
| GO@MoS <sub>2</sub>   | 3.64              | 70%               | CB/S      | ~600 mAh g <sup>-1</sup> ,<br>95th, 0.2 C  | 2.2                                          | 14        | S4           |
| TiO <sub>2</sub> /C   | 1.1               | 54%               | AB/S      | ~1000 mAh g <sup>-1</sup> ,<br>60th, 0.1 C | <2.0                                         | 36        | S5           |
| Sb2S3                 | 1.0               | 65%               | KB/S      | 680 mAh g <sup>-1</sup><br>100th, 0.2 C    | <2.0                                         |           | S6           |
| rGO@SL                | 3.8               | 75%               | CB/S      | 700 mAh g <sup>-1</sup><br>50th, 0.05 C    | 2.7                                          | 8         | <b>S</b> 7   |
| TiN                   | 1.3               | 70%               | Super P/S | 744 mAh g <sup>-1</sup><br>200th, 0.5 C    | <2.0                                         | 46        | <b>S</b> 8   |
| MnO <sub>2</sub>      | 1.5-2.5           | 66%               | KB/S      | ~603 mAh g <sup>-1</sup> ,<br>500th, 0.5 C | <2.0                                         | 8.8       | S9           |
| AC/Ni/N               | 7.0               | 80%               | CB/S      | ~714 mAh g <sup>-1</sup> ,<br>100th, 0.1 C | 7                                            | 7.8       | This<br>work |

## References

[S1] L. Y. Luo, X. Y. Qin, J. X. Wu, G. M. Liang, Q. Li, M. Liu, F. Y. Kang, G. H. Chen, B. H. Li, *J. Mater. Chem. A*, 2018, **6**, 8612-8619.

[S2] K. S. Wu, Y. Hu, Z. Shen, R. Z. Chen, X. He, Z. L. Cheng and P. Pan, *J. Mater. Chem. A*, 2018, **6**, 2693-2699.

[S3] S. S. Yao, J. C, J. Q. Huang, Z. H. Lu, Y. Deng, W. G. Chong, J. X. Wu, M. Haq, F. Ciucci and J. K. Kim, *Adv. Energy Mater.*, 2018, 1800710.

[S4] L. Tan, X. H. Li, Z. X. Wang, H. J. Guo, J. X. Wang, *ACS Appl. Mater. Interfaces*, 2018, **10**, 3707-3713.

[S5] S. Y. Liu, C. Y. Fan, Y. H. Shi, H. C. Wang, X. L. Wu, J. P. Zhang, *ACS Appl. Mater. Interfaces*, 2018, **10**, 509-516.

[S6] B. Y. Hao, H. Li, W. Lv, Y. B. Zhang, S. Z. Niu, Q. Qi, S. J. Xiao, J. Li, F. Y. Kang, Q. H. Yang, *Nano Energy*, 2019, **60**, 305-311.

[S7] Z. Z. Du, C. K. Guo, L. J. Wang, A. J. Hu, S. Jin, T. M. Zhang, H.C. Jin, Z. K. Qi, S. Xin, X. H. Kong, Y. G. Guo, H. X. Ji, L. J. Wan, *ACS Appl. Mater. Interfaces*, 2017, 9, 43696–43703.

[S8] B. Y. Hao, H. Li, W. Lv, Y. B. Zhang, S. Z. Niu, Q. Qi, S. J. Xiao, J. Li, F. Y. Kang, Q. H. Yang, *Nano Energy*, 2019, **60**, 305-311.

[S9] X. Song, G. P. Chen, S. Q. Wang, Y. P. Huang, Z. Y. Jiang, L. X. Ding, H. H. Wang, *ACS Appl. Mater. Interfaces*, 2018, **10**, 26274-26282.