Nanoconfined Iron (III) Fluoride Cathode in NaDFOB Electrolyte towards High-Performance Sodium-Ion Batteries

Zifei Sun, Wenbin Fu, Michael. Z. Liu, Peilin Lu, Enbo Zhao, Alexandre Magasinski, Mengting Liu, Shunrui Luo, Jesse McDaniel and Gleb Yushin
Figure S1. Capacity comparison between 3rd and 50th cycle under 1.2-4.2 V for salts dissolved in EC:DEC:DMC=2:1:1. a) 1M NaDFOB b) 1M NaPF₆ c) 1M NaClO₄
Figure S2. Capacity comparison between 10th and 50th cycle under 1.2-4.2 V for the same salt dissolved in different solvents a) EC:DEC:DMC=2:1:1 b) EC:DEC=1:1 c) EC:DMC=1:1
Figure S3. a) discharge capacity for 1M NaDFOB under different voltage ranges b) discharge capacity for 1M NaClO₄ under different voltage ranges
Figure S4. CV diagram of NaDFOB cell under the voltage range of 1.5-3.7 V.
Figure S5. Charge/discharge curve for cells under 1.2-4.2v at 2nd, 3rd and 50th cycle using 1M NaClO₄.
Figure S6. SEM of FeF$_3$/CNFs using carbonization temperature at a) 500 °C, b) 700 °C.
Figure S7. Capacity comparison of cathode materials made from different temperature.
Figure S8. Long-term testing at 100 mA g$^{-1}$ for NaDFOB cells under the voltage range of 1.2-4.2 V.
Figure S9. Rate capacity testing for NaDFOB cells under the voltage range of 1.2-4.2 V.
Figure S10. XPS for bare FeF$_3$