Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2020

Nanoconfined Iron (III) Fluoride Cathode in NaDFOB Electrolyte towards

High-Performance Sodium-Ion Batteries

Zifei Sun,^a Wenbin Fu,^b Michael. Z. Liu,^b Peilin Lu,^b Enbo Zhao,^a Alexandre Magasinski,^b Mengting Liu,^{bc} Shunrui Luo,^{bd} Jesse McDaniel^a and Gleb Yushin^{*b}

Figure S1. Capacity comparison between 3^{rd} and 50^{th} cycle under 1.2-4.2 V for salts dissolved in EC:DEC:DMC=2:1:1. a) 1M NaDFOB b) 1M NaPF₆ c) 1M NaClO₄

Figure S2. Capacity comparison between 10th and 50th cycle under 1.2-4.2 V for the same salt dissolved in different solvents a) EC:DEC:DMC=2:1:1 b) EC:DEC=1:1 c) EC:DMC=1:1

Figure S3. a) discharge capacity for 1M NaDFOB under different voltage ranges b) discharge capacity for 1M NaClO₄ under different voltage ranges

Figure S4. CV diagram of NaDFOB cell under the voltage range of 1.5-3.7 V.

Figure S5. Charge/discharge curve for cells under 1.2-4.2v at 2^{nd} , 3^{rd} and 50^{th} cycle using 1M NaClO₄.

Figure S6. SEM of FeF₃/CNFs using carbonization temperature at a) 500 °C, b) 700 °C.

Figure S7. Capacity comparison of cathode materials made from different temperature.

Figure S8. Long-term testing at 100 mA g^{-1} for NaDFOB cells under the voltage range of 1.2-4.2 V.

Figure S9. Rate capacity testing for NaDFOB cells under the voltage range of 1.2-4.2 V.

Figure S10. XPS for bare FeF_3