Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Fig. S1. (a-c) SEM image of N-doped carbon nanofibers (NCNFs)

Fig. S2. (a, b) SEM images and (c,d) TEM images of VS₄ microspheres.

Fig. S3. (a, b) SEM images and (c,d) TEM images of bare V_3S_4 nanosheets.

Fig. S4. XPS survey spectrum of VS₄, bare V₃S₄, and V₃S₄@NCNFs composites.

Fig. S5. The high-resolution XPS spectra of VS₄ (a, b), bare V_3S_4 (c, d) with V 2p, S 2p, respectively.

Fig. S6. TGA curves of V_3S_4 @NCNFs sample in air from room temperature to 800 °C.

The initial mass loss below 350 °C is ascribed to the oxidation of V_3S_4 into V_2O_5 and the evaporation of water, and the distinct weight loss between 350 and 450 °C could be attributed to the carbon combustion with O_2 into CO_2 . The mass ratios of V_3S_4 in these composites are calculated:

$$V_{3}S_{4} + O_{2} \rightarrow V_{2}O_{5}$$

$$V_{3}S_{4}(wt\%) = 100 \times \frac{2 \times M V_{3}S_{4}}{2 \times M V_{2}O_{5}} \times \frac{m V_{2}O_{5}}{m V_{3}S_{4}@NCNFs}$$

$$= 29.7\%$$

Fig. S7. (a) CV curves of V_3S_4 @NCNFs electrode at a scan rate of 0.2 mV s⁻¹ in the potential of 0.01-3.0 V (vs. K/K⁺). (b) Galvanostatic charge/discharge profiles of V_3S_4 @NCNFs at a current density of 0.2 A g⁻¹ for PIBs.

Fig. S8. The CV curves and Galvanostatic charge/discharge profiles of VS_4 (a, b), bare V_3S_4 (c, d), respectively.

The CV curve of VS₄ quite disagree with that of V₃S₄@NCNFs, which have strong cathodic/anodic peaks, in matching with the charge-discharge plateaus of VS₄, which demonstrate its obvious diffusion behavior not pesoducapacitive behavior. Regrettably, there is a large area loss for the CV curves from the first to the second cycle, demonstrating the poor reversibility for VS₄ as the anode in PIBs. The CV image of bare V₃S₄ is similar to that of V₃S₄@NCNFs, which agrees with the charge-discharge weak plateaus of V₃S₄. However, in the subsequent cycle, the V₃S₄ electrode shows the higher potentials of oxidation peaks and lower potentials of corresponding reduced peaks, indicating the large polarization for the potassium extraction/insertion process.^{1, 2}

Materials	Cycling Performance			Rate performance		
	Discharge Capacity (mAh g ⁻¹)	Cycles	Current (mA g ⁻¹)	Discharge Capacity (mAh g ⁻¹)	Current (A g ⁻¹)	Reference
V ₃ S ₄ @NCNFs	447	300	200	449, 410, 374, 346,	0.1, 0.2, 0.5, 1.0,	This work
	245	1000	2000	309, 249 and 202	2.0, 5.0 and 10	
VS ₂ NSA	410	60	100	400, 380, 330,	0.1, 0.2, 0.5, 1.0 and	36
	360	100	500	250 and 100	2.0	
V ₅ S ₈ @C		1.0.0		550, 474, 422,	0.05, 0.1, 0.2, 0.5,	
	501	100	50	360, 312, 274,	1.0, 2.0, 5.0 and	37
	190	1000	2000	205 and 153	10	
VSe ₂		35 200 200		374, 350, 334,		53
	335		269 and 172	0.1, 0.2, 5, 1 and 2.0		
VN-QDS	228	100	100	261, 215, 187	01.05.1.120	54
	215	500	500	and 152	0.1, 0.5, 1 and 2.0	
V ₂ O ₃ @PNCNFs		200	50	240, 221, 202, 186,	0.05, 0.1, 0.2, 0.3,	55
	230	200		170 and 134	0.5 and 1	
V2O3-x@rGO	162	500	200	250, 210, 175, 160,	0.025, 0.05, 0.1	56
	104	2000	1000	127 and 104	0.2, 0.5 and 1.0	
MoS ₂ /N-doped-	212	200	100	258, 238, 204,	0.1, 0.2, 0.5,	38
С	151	1000	500	171 and 131	1 and 2	
MoS2@rGO	416.7	200	100	438.5, 364.8, 302.9,	0.1, 0.2, 0.5,	29
	424.6	1000	500	253 and 196.8	1 and 2	
WS ₂	102.8	100	100	109, 99, 86, 74, 68 and 62	0.05, 0.1, 0.2, 0.4, 0.6 and 0.8	39

Table S1. Electrochemical performance comparison of vanadium-based and layered transition

 metal chalcogenides anode materials for PIBs.

Fig. S9. Long-term cycling stability of the V_3S_4 @NCNFs and V_3S_4 electrodes at current densities of 1 A g⁻¹.

Fig. S10. Different magnifications SEM images of V_3S_4 @NCNFs electrode before cycling (a, b) and after 300 cycles at 0.2 A g⁻¹(c, d).

Fig. S11. (a) Nyquist plots of the VS₄, bare V₃S₄, and V₃S₄@NCNFs electrodes. (b) Nyquist plots of the V₃S₄@NCNFs electrodes after different cycles (inset: fitting equivalent circuit).

Tuble 54. The fitted results of metalement (354@fiter(fib)oused on the equivalent enount model.					
sample	Rs (Ω)	$\operatorname{Ret}(\Omega)$			
Before cycling	2.41	888			
After 5 cycles	2.43	760			
After 20 cycles	2.08	493			

Table S2. The fitted results of hierarchical V_3S_4 @NCNFs based on the equivalent circuit model.

References

- 1. C. Mao, Y. Zhong, H. Shang, C. Li, Z. Guo and G. Li, *Chem. Eng. J.*, 2016, **304**, 511-517.
- D. Zhang, Y. J. Mai, J. Y. Xiang, X. H. Xia, Y. Q. Qiao and J. P. Tu, *J. Power Sources.*, 2012, 217, 229-235.