Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Improving the Cycling and Air-Storage Stability of LiNi_{0.8}Co_{0.1}Mn_{0.1}O₂ through

an Integrated Surface/Interface/Doping Engineering

Yanwu Zhai,^a Wenyun Yang,^b De Ning^c, Jinbo Yang,^b Limei Sun,^d Götz Schuck^c, Gerhard

Schumacher^c and Xiangfeng Liu*^a

^a Center of Materials Science and Optoelectronics Engineering, College of Materials Science and

Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China

^bState Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing

100871, China

^cHelmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin,

Germany

^dDepartment of Nuclear Physics, China Institute of Atomic Energy, Beijing 102413, China

*Corresponding author: email: <u>liuxf@ucas.ac.cn</u>

(003) R_p c/(Å) V/(Å³) $Z_{ox}/(Å)$ a/(Å) Samples /(104) (%) Pristine 2.8688(1) 14.1793(1) 101.0619(10) 0.2419(3) 1.359 1.73 NCM 101.2128(9) LZO@NCM 2.8702(1) 14.1869(1) 0.2430(2) 1.434 1.49

Table S1. Rietveld refinement results of lattice parameters based on XRD data and the I(003)/I(104) value for the pristine and Li_2ZrO_3 coated samples.

 Table S2. Rietveld refinement results of lattice parameters from neutron diffraction for the pristine and Li₂ZrO₃ coated samples.

Samples	a /(Å)	c/ (Å)	V /(Å ³)	R _{wp}	R _p
Pristine NCM	2.8704(2)	14.193(3)	101.269(12)	8.39	6.49
LZO@NCM	2.8725(1)	14.2003(8)	101.4713(10)	7.03	5.28

Table S3. Bond length for the pristine and Li2ZrO3-coated sample samples fromRietveld refinement results of neutron diffraction.

Samples	O-TM/(Å)	O-Li/(Å)	O-O/ (Å)	Li-Li/(Å)	TM-Li/(Å)	R _{wp} (%)	R _p (%)
Pristine NCM	1.9660	2.1111	2.8704	2.8704	2.8882	8.39	6.49
LZO@NCM	1.9665	2.1134	2.8725	2.8725	2.8899	7.03	5.28

Atom	site	x/a	y/b	z/c	Occ
Li	3a	0.0000	0.0000	0.0000	0.4875(19)
Ni	3a	0.0000	0.0000	0.0000	0.0121(19)
Ni	3b	0.0000	0.0000	0.5000	0.40(1)
Co	3b	0.0000	0.0000	0.5000	0.0488
Mn	3b	0.0000	0.0000	0.5000	0.0474
Li	3b	0.0000	0.0000	0.5000	0.01(7)
Ο	6c	0.0000	0.0000	0.24119(15)	1.00000

Table S4. The refined crystal sites and atom occupancies of the pristine sample from

 the neutron diffraction data.

Table S5. The refined crystal sites and atom occupancies of the Li_2ZrO_3 -coated

Atom	site	x/a	y/b	z/c	Occ
Li	3a	0.0000	0.0000	0.0000	0.491(2)
Ni	3a	0.0000	0.0000	0.0000	0.009(2)
Ni	3b	0.0000	0.0000	0.5000	0.405(4)
Со	3b	0.0000	0.0000	0.5000	0.04884
Mn	3b	0.0000	0.0000	0.5000	0.04754
Zr	3b	0.0000	0.0000	0.5000	0.00013
Li	3b	0.0000	0.0000	0.5000	0.0095(4)
0	6c	0.0000	0.0000	0.24108(12)	1.00000

sample from the neutron diffraction data.

Fig S1 SEM image for pristine (a, b) and Li_2ZrO_3 -coated NMC(c, d)

Figure S2. (a) XPS spectra of Li₂ZrO₃ coated sample; (b) XPS spectra for Zr 3d; XPS spectra for Ni 2p of the pristine sample(c) and Li₂ZrO₃ coated sample(d); XPS Zr 3d spectra collected after being etched to 0 nm, 20 nm and 50 nm for Li₂ZrO₃-coated sample.

Figure S3. XRD patterns of the pristine sample (a) and Li₂ZrO₃-coated sample (b) before and after 500 cycles. Observed/calculated XRD patterns of the pristine sample(c,before cycling; e, after cycling) and Li₂ZrO₃ coated sample (d,before cycling; f, after cycling).

Figure.S4 The optimized structures of the pristine NMC(a) and $\rm Li_2ZrO_3\text{-}coated$ NMC(b)