Supporting Information

Core@Dual-shell Nanorod Array with Cascading Band Configuration for Enhanced Photocatalytic Properties and Anti-photocorrosion

Daotong You¹, Chunxiang Xu^{1*}, Xiangxiang Wang¹, Jing Wang², Wenyue Su², Ru Wang¹, Tianlang Chen¹, Ru Wang¹, and Zengliang Shi¹

1. State Key Laboratory of Bioelectronics, School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, 210096, P. R. China

2. State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350002, P. R. China

* Corresponding Author: e-mail address: <u>xcxseu@seu.edu.cn</u>

Fig. S1. The picture of the working photoelectrode.

Fig. S2. (a) SEM image of the cross-section of the ZnO-CdS-NiO_x nanorod array, (b) EDS element maps of Zn, O, S, Cd and Ni collected from the top-middle part (light blue box region), and (c) EDS spectrum from the bottom of the nanorod array (red box region). (d) TEM images of an individual ZnO-CdS-NiO_x nanorod.

Fig. S3. TEM images of (a) ZnO-CdS-1 (sputtering for 8 min) core-shell nanorod and (b) ZnO-CdS-3 (sputtering for 15 min) core-shell nanorod.

Fig. S4. TEM images and corresponding HRTEM images of (a), (b) ZnO-CdS-NiO_x-1 (sputtering for 3 min) core@dual-shell nanorod and (c), (d) ZnO-CdS-NiO_x-3 (sputtering for 8 min) core@dual-shell nanorod.

Fig. S5. (a) UV-Vis diffuse reflectance spectra of CdS, ZnO and NiO_x. (b) Tauc plots of CdS, ZnO and NiOx.

The band gap energy (E_g) for the samples were determined through following formula: $(\alpha h \upsilon)^{1/n} = A(h \upsilon - E_g)$, where A, E_g , h, α and υ are proportionality constant, band gap, Planck constant, absorption coefficient and light frequency, respectively. The n value is determined by the type of optical transition of semiconductors (the n values of direct-gap semiconductor and indirect-gap semiconductor are 1 and 4).[1,2] The corresponding of E_g values of CdS, ZnO and NiO_x were estimated to be 2.38 eV, 3.18 eV and 3.65 eV, respectively.

Fig. S6. The optical absorption spectra of samples.

Fig. S7. (a) Time courses of ZnO-NiO_x and CdS-NiO_x H₂ evolution, and (b) the compared H₂ evolution rates of ZnO, CdS, ZnO-CdS-2, ZnO-CdS-NiO_x-2, ZnO-NiO_x and CdS-NiO_x under simulated sunlight irradiation.

Fig. S8. Photocurrent responses of ZnO-CdS-NiO_x-2 measured at $\lambda = 380, 420, 450, 480$ and 510 nm, respectively.

Fig. S9. Cycling runs for the photocatalytic hydrogen evolution activity under simulated sunlight of (a) ZnO-CdS-2 and (b) CdS.

Table S1.	Comparison	with previ	ous ZnO-CdS	5 heterostructure	photocatalysts	on H_2	evolution
activity.							

Photocatalyst	Light source	Sacrificing	Activity	Stability	AQE	Photocurrent	Ref
		agent	[mmol/h g]		(%)	(mA/cm ²)	
ZnO-CdS-NiO _x	300W Xe lamp	Na ₂ S/Na ₂ SO ₃	84.83	36 h	33.89	8.44@0.1 V	This
core@dual-shell nanorod							work
CdS/ZnO nanofibers	500W Xe	Na ₂ S/Na ₂ SO ₃	0.35	24 h	-	-	3
	$lamp~(\lambda\!\geq\!420$						
	nm)						
ZnO/CdS microspheres	350W Xe lamp	Na ₂ S/Na ₂ SO ₃	4.13	12 h	-	0.06	4
CdSQDs/ZnO nanosheets	300W Xe	Na ₂ S/Na ₂ SO ₃	22.12	25 h	-	0.5@0.5 V	5
	$lamp~(\lambda\!\geq\!420$						
	nm)						
NiO@Ni-ZnO/RGO/CdS	300W Xe lamp	Na ₂ S/Na ₂ SO ₃	8.2	15 h	-	-	6
Pt/CdS/ZnO	300W Xe lamp	Na ₂ S/Na ₂ SO ₃	4.41	-	-	-	7
CdS@ZnO	225W Xe lamp	Na ₂ S/Na ₂ SO ₃	11.13	20 h	7.18	0.6@0.5 V	8
CdS-ZnO nanowires	300W Xe lamp	ascorbic Acid	9.61	-	-	-	9
CdS/ZnO	500W Xe lamp	Na ₂ S/Na ₂ SO ₃	0.85	15 h	-	-	10
ZnO/NiO/Cd _{1-x} Zn _x S	450W Xe lamp	Na ₂ S/Na ₂ SO ₃	17	12 h	15	-	11
NiO-ZnO-CdS	150W Xe lamp	Na ₂ S/Na ₂ SO ₃	-	-	-	2.15@1.23V	12
NiO/CdS@ZnO	300W Xe lamp	Na ₂ S/Na ₂ SO ₃	-	-	-	0.96@-0.6 V	13

Fig. S10. XPS survey spectra of ZnO-CdS-NiO_x-2 before and after 12 cyclic usages.

Fig. S11. High-resolution Ni 2p XPS spectra of ZnO-CdS-NiO_x-2 before and after 12 cyclic

usages.

Fig. S12. The concentration of Cd^{2+} of CdS, ZnO-CdS-2 and ZnO-CdS-NiO_x-2 after 12 cyclic

usages.

Table S2. The average fluorescence lifetimes of ZnO, ZnO-CdS-2 and ZnO-CdS-NiO _x -2,
respectively.

Sample	Lifetime, τ (ps)	Pre-exponential factors B (%)	Average lifetime τ (ps)
	$\tau_1 = 257.55$	$B_1 = 52$	
ZnO	$\tau_2 = 257.55$	$B_2 = 48$	257.55
	$\tau_1 = 378.72$	$B_1 = 63.25$	
ZnO-CdS-2	$\tau_2 = 575.34$	$B_2 = 36.75$	450.98
	$\tau_1 = 492.23$	$B_1 = 71.38$	
ZnO-CdS-NiO _x -2	$\tau_2 = 691.41$	$B_2 = 28.62$	549.23

The biexponential function: $I(t) = B_1 exp(-t/\tau_1) + B_2 exp(-t/\tau_2)$ [14]

References

1. Y. Wang, G. Tan, T. Liu, Y. Su, H. Ren, X. Zhang, Y. Liu, *Appl. Catal. B-Environ.*, 2018, 234, 37-49

- 2. G. Ba, Z. Liang, H. Li, N. Du, J. Liu, W. Hou, Appl. Catal. B-Environ., 2019, 253, 359-368
- 3. G. Yang, W. Yan, Q. Zhang, S. Shen, S. Ding, Nanoscale, 2013, 5, 12432-12439.
- 4. S. Wang, B. Zhu, M. Liu, L. Zhang, J. Yu, M. Zhou, Appl. Catal. B-Environ., 2019, 243, 19-26.
- 5. D. Ma, J. Shi, Y. Zou, Z. Fan, X. Ji, C. Niu, ACS Appl. Mater. Inter., 2017, 9, 25377-25386.
- 6. F. Chen, L. Zhang, X. Wang, R. Zhang, Appl. Surf. Sci., 2017, 422, 962-969.
- 7. Y. G. Kim, W. K. Jo, Inte. J. Hydrogen Energ., 2017, 42, 11356-11363.
- 8. D. Ma, J. W. Shi, Y. Zou, Z. Fan, X. Ji, C. Niu, L. Wang, Nano Energy, 2017, 39, 183-191.
- 9. S. Tso, W. S. Li, B. H. Wu, L. J. Chen, Nano Energy, 2018, 43, 270-277.
- 10. X. Zou, P. P. Wang, C. Li, J. Zhao, D. Wang, T. Asefa, G. D. Li, *J. Mater. Chem. A*, 2014, **2**, 4682-4689
- 11. S. R. Lingampalli, A. Roy, M. Ikram, C. N. R. Rao, Chem. Phys. Lett., 2014, 610, 316-320
- 12. P. Iyengar, C. Das, K. R. Balasubramaniam, J. Phys. D: Appl. Phys., 2017, 50, 10LT01
- 13. Y. Li, X. Zhang, S. Jiang, H. Dai, X. Sun, Y. Li, Sol. Energ. Mat. Sol. C., 2015, 132, 40-46
- 14. D. Ruan, S. Kim, M. Fujitsuka, T. Majima, Appl. Catal. B-Environ., 2018, 238, 638-646