Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Controlling C₂₊ Products Selectivity of Electrochemical CO₂ Reduction on Electrosparyed Cu Catalyst

Si Young Lee^{a, b}, Sang Youn Chae^a, Hyejin Jung^{a, b}, Chan Woo Lee^{a, c}, Dang Le Tri Nguyen^{a, b}, ^d, Hyung-Suk Oh^{a, b}, Byoung Koun Min^{a, e, f}, Yun Jeong Hwang^{*a, b,g}

^a Clean Energy Research Center, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea

^b Division of Energy and Environmental Technology, KIST School, Korea University of Science and Technology, Hwarang-ro 14 gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea

^c Department of Chemistry, Kookmin University, Seoul 02707, Republic of Korea

^d Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam

^e National Research Agenda Division, Korea Institute of Science and Technology, 5, Hwrangro 14 gil, Seongbuk-gu, Seoul, 02792, Republic of Korea

^fGreen School, Korea University, 145, Anam-ro, Seonbuk-gu, Seoul, 02842, Republic of Korea

^g Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea

*Corresponding author. Tel: +82-2-958-5227. Fax: +82-2-958-5809.

E-mail address: yjhwang@kist.re.kr (Y. J. Hwang)

Fig. S1 LSV comapred with Ar and CO_2 atmosphere for CSNP/CP sample

Fig. S2 Chromatogram and mass spectroscopy measured by GC-MS with CSNP/CP; a) when ${}^{12}CO_2$ was used, and b) ${}^{13}CO_2$ was used for CO_2RR .

Figure S3 SEM image of CSNP/Cu sample

Fig. S4 HER activity of each substrate in 0.1M KHCO₃ N₂ pursing condition

Fig. S5 Morphology change of CSNP/CP by reaction time; a) 2 hours CO₂RR post; b) 15 hours CO₂RR post; c) 30 hours CO₂RR post; 60 hours CO₂RR post

Fig. S6 SEM image of each catalyst sample a) CSNP/Cu before CO₂RR, b) CSNP/Cu 2 hour after CO₂RR

Fig. S7 HR-TEM image of each catalyst sample a) CSNP/Cu before CO₂RR, b) CSNP/Cu 2 hour after CO₂RR, c) CSNP/CP before CO₂RR, d) CSNP/CP 2 hour after CO₂RR

Fig. S8 Total current density compared with CSNP/Cu and CSNP/CP

Fig. S9 The Cu 2p XPS peak of each catalyst-substrate module sample a) CSNP Cu 2p peak compared with CO_2RR pre-post condition b)) CSNP Cu 2p peak compared with CO_2RR pre-post condition

Fig. S10 Cu based reference materials Cu K-edge EXAFS spectra

Fig. S11 Linear combination fitting (LCF) results of in situ/operando CSNP/CP sample; a) 5min CO₂RR sample results; b) 35min CO₂RR sample results; c) 105min CO₂RR sample results

	5 min	35 min	105 min
Cu ⁰	58.4%	67.9%	68.8%
Cu ₂ O	28.7%	24.3%	27.4%
CuO	12.9%	7.9%	3.8%

 Table S1 LCF results of in situ/operando CSNP/CP data

Fig. S12 Surface morphology SEM image of CSNP/CP catalyst depending on spray amount

Fig. S13 C_2H_4 to CH_4 ratio and partial current density depending on spray amount in CSNP/CP catalyst; a) C_2H_4 / CH_4 ratio trend; b) C_2H_4 and CH_4 partial current densitiy trend

Fig. S14 The partial current densitiy of CSNP gas products in each cation electrolyte

Fig. S15 The potential dependent faradaic efficiency of 12.8 μ g/cm² applied CSNP/CP; a) 12.8 μ g/cm² CSNP/CP in 0.1 M KHCO₃; b) 12.8 μ g/cm² CSNP/CP in 0.1 M CsHCO₃; c) 12.8 μ g/cm² CSNP/CP in 0.1 M NaHCO₃ d) compared except hydrogen

Fig. S16 Total and partial current density of each electrolyte condition in 12.8 μ g/cm² CSNP/CP in 0.1 M (Cs, K, Na)HCO₃ CSNP/CP a) total current density b) C₂H₄ partial current density c) CO partial current density d) CH₄ partial current density

Fig. S17 Tafel slope of C_2H_4 in each cation electrolyte

Fig. S18 TOF of C_2H_4 for applied potential in 0.1 M KHCO₃ electrolyte

Fig. S19 The liquid products faradaic efficiency trend with spray amount