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Experimental Section
Synthesis of ZCO: ZnCo,04 microspheres were prepared according to a

solvothermal synthesis method reported in our previous work.[sliced] Typically, 5 mmol

of Zn(NO3),* 6H,0, 10 mmol of Co(NO3),*6H,0 and 180 mmol urea were dispersed

in 70 mL of ethylene glycol with continuous stirring. After turning into homogenous
solution, the above mixture was transferred into a 100 mL Teflon lined stainless-steel
autoclave and heated at 200 °C for 24 hours, before cooling down to room
temperature. The obtained products were washed several times by water and ethanol,
and collected by vacuum filtration, and then dried in 80 °C oven for 12 hours. Finally,
by annealing the precursors at 600 °C for 4 h in air with a heating rate of 1 °C min’!,
ZnCo,0,4 microspheres were acquired.

Synthesis of ZCO/H-NCF and ZCO/NCF composites: 1 ml of 4 mM NHF aqueous
solution was added into 2 ml of I mM NiCl, aqueous solution under vigorous stirring
drop by drop. The water was evaporated by heating and stirring the mixture at 85 °C.

The resulting sample was annealed at 400 °C for 2 h under Ar atmosphere, with a



heating rate of 5 °C min’!, then the NiCl, F, product was obtained. ZCO/H-NCF was
prepared by mixing ZCO and NiCl,Fy in de-ioned water with a mass ratio of 7:3.
The mixture was then heated at 85 °C with stirring until all free water was evaporated.
The product was collected and designated as ZCO/H-NCF. ZCO/NCF was further
obtained by annealing at 280 °C for 4 h in Ar atmosphere, with a heating rate of 5 °C
min!,

Material Characterization: The morphologies of the materials were checked by
field emission scanning electron microscopy (FE-SEM, JSM-6500) and transmission
electron microscopy (TEM, FEI Tecnai G2 F30). X-ray diffraction (XRD) patterns
were identified on a Rigaku D/max 2500 diffractometer with Cu Ka radiation (A =
1.5418 A). An X-ray photoelectron spectroscopy (XPS, PHI 5000 VersaProbe II) was
applied to characterize the chemical bonding states of samples and electrode materials
upon lithiation/delithiation. Raman spectra of samples were obtained on a Microlaser
confocal Raman spectrometer (HORIBA LabRAM HRS800). Fourier transform
infrared spectroscopy (FT-IR, MDTC-EQ-M13-01) was used to obtain the FT-IR
spectra of samples. The thermal stability of the samples was measured by
thermogravimetric (TGA, Hitachi HT-Seiko Instrument Exter 6300) in nitrogen
heating from room temperature to 400 °C with a heating rate of 10 °C min-!.

Electrochemical Measurement: The lithium storage performance of electrodes was
measured by 2032-type coin cells. Active materials (ZCO, ZCO/H-NCF and
ZCO/NCF), carbon black (super P) and polyvinylidene fluoride (PVDF) were mixed
in N-methyl-2-pyrolidinone (NMP) solvent with a mass ratio of 8:1:1. The obtained
slurry was pasted onto copper foil after stirring for 6 h, followed by drying in a
vacuum oven for 12 h at 110 °C. Then the electrode film was punched into a disk with
a diameter of 15 mm. The mass of the active material was controlled at =1 mg cm™.
The electrolyte was LiPF¢ (1 M) in a mixed solvent of ethylene carbonate (EC)/diethyl
carbonate (DEC) (volume ratio of 1:1). The galvanostatic charge-discharge tests were
conducted using a Land 2001A battery test system in a voltage range of 0.01-3.0 V at
room temperature. Cyclic voltammetry (CV) tests were performed on a VMP3

electrochemical station with a scan rate of 0.1 mV s! in the same potential range.
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Fig. S2 TEM (a) and HRTEM (b) image of ZCO.
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Fig. S3 Dark field scanning transmission electron microscope (STEM) image and
corresponding EDS mapping of ZCO/H-NCF.
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Fig. S4 TEM (a) and HRTEM (b) image of ZCO-NCF.
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Fig. S5 XRD pattern of ZCO/NCF
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Fig. S6 (a) The full XPS spectrum of ZCO/H-NCF; (b) Zn 2p, (c) Co 2p, (d) Ni 2p, (e)
O Is, (f) Cl 2p, and (g) F 1s XPS spectra of ZCO/H-NCF.



Fig. S7 Cross-sectional SEM image of the ZCO/H-NCF electrode

The areal mass loading is 1 mg cm? and the thickness is 7 um, the gravimetric
capacity of ZCO/H-NCF electrode was 1089 mAh g -!. Therefore the mass density
and the volumetric capacity of the ZCO/H-NCF electrode can be calculated to be 1.43

g cm3 and 1557 mAh cm3, respectively.
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Fig. S8 EIS spectrum of ZCO, ZCO/H-NCF and ZCO/NCF electrodes at pristine state
(a) and after 100 cycles at 1 A g! (b).
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Fig. S9 Cycling performance of ZCO/H-NCF at a current density of 0.2 A g!.
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Fig. S10 C 1s XPS evolution of SEI layer in ZCO electrode (a) and ZCO/NCF

electrode (b) based on the pristine, fully lithiated, full delithiated states in the first

cycle.
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Fig. S11 O 1s XPS evolution of ZCO electrode (a) and ZCO/NCF electrode (b) based

on the pristine, fully lithiated, full delitiated states in the first cycle.
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Fig. S12 (a) Ni 2p, (b) Fls and (c) CI 2p XPS evolution of ZCO/H-NCF electrode

based on the pristine, fully lithiated, full delitiated states in the first cycle.
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Fig. S13 TEM (a) and high-resolution TEM (b) image of the ZCO/H-NCF electrode

after full lithiation.
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Fig. S14 Cycling performance of the ZnCo,04/hydrated NiCl, hybrid (ZCO/H-NiCl,)
(a) and the ZnCo,04/hydrated NiF, hybrid (ZCO/H-NiF,) (b) at a current density of 1
A g'!. SEM image of ZCO/H-NiF, (c).

ZCO/H-NiCl, and ZCO/H-NiF, were prepared by the same process as that of ZCO/H-
NCF except that only NiCl, or NiF, was added during the solution reaction. The
electrochemical performance of ZCO/H-NiF, is not only poorer than that of ZCO/H-
NCF but also much poorer than that of the ZCO anode. This may be ascribed to the
low solubility of NiF, in water (2.5 g/100 mL). It generates the uneven hybrid of ZCO
and H-NiF, (see Fig. Sl4c) during solution synthesis process and thus poor
electrochemical performance.



Table S1 Performance comparison between our ZCO/H-NCF anode and previously
reported advanced AB,O,-type transition metal oxide anodes.

Initial
Sample Coulombic Rate performance Cycling stability Ref.
efficiency
CoFe,0,Hollow  72.7% 46.2% capacity 70.5% capacity retention .
Spheres -1 ; -1 over 600 cycles at 1 A g-!

p at0.1Ag retentionat2 A g
ZnCo,0 .

I'l 024 71.2 % 26.5% capacity 72.4% capacity retention
microspheres N 2
/NiSi. nanowires &t 0.1Ag! retention at 4 A g’! over 340 cyclesat 1 A g
Nic02V20g
Yolk—Double 60% 28.6% capacity ~69% capacity retention 3

at0.2 A g’! retention at 10 A g!  over 500 cyclesat 1 A g'!
Shell Spheres
Co304/NiO/C 60% 47.4% capacity 76.5% capacity retention .
hybrids at0.2 A g! retention at 4 A g! over 1000 cyclesat 1 A g'!
Hollow Co304 65.3% 22.9% capacity 79.7% capacity retention s
Microspheres at 0.05 A g'! retention at 2 A g’! over 1000 cyclesat 1 A g!
ZCO/MNCE 83% 66.3% capacity 75% capacity retention This
at0.2 A g! retentionat 5 A g!  over 1000 cyclesat 1 A g!  work
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