Supporting Information

Self-Supported Binder-Free Hard Carbon Electrodes for Sodium-Ion Batteries: Insights into the Sodium Storage Mechanisms

Adrian Beda ^{1,2}, Claire Villevieille³, Pierre-Louis Taberna ^{4,5}, Patrice Simon^{4,5}, Camélia Matei Ghimbeu^{1,2,5,*}

 ¹Université de Haute-Alsace, CNRS, Institut de Science des Matériaux de Mulhouse (IS2M) UMR 7361, F-68100 Mulhouse, France
 ²Université de Strasbourg, F-67081 Strasbourg, France
 ³University Grenoble-Alpes, University Savoie Mont-Blanc, Grenoble INP, LEPMI Laboratory, 1130 rue de la piscine, 38402 Saint Martin d'Hères, France
 ⁴Université de Toulouse, CIRIMAT, UMR-CNRS 5085, F-31062 Toulouse, France
 ⁵Réseau sur le Stockage Electrochimique de l'Energie (RS2E), FR CNRS 3459, 80039 Amiens Cedex, France

Corresponding author: E-mail: camelia.ghimbeu@uha.fr

	Ce	Cotton filter paper		
Name	111A	M5	15A	54
	(FP-A)	(FP-B)	(FP-C)	(FP-D)
Pore size	12-15µm	1.2µm	2.5µm	22 µm
Thickness	0.21mm	0.082mm	0.195mm	0.185 mm

Table S.1. Physical properties of all tested filter papers given by the manufacturer

Figure S1: Photos of self-sustained filter paper, impregnated filter papers with phenolic resin and hard carbon.

Elements	Cellulose			Cotton	
		based SSE			
	HC-A	HC-B	HC-C	HC-D	
С	92.25	87.50	96.40	96.90	
0	7.05	8.50	3.57	3.10	
Al	-	0.90	-	-	
Mg	-	0.60	-	-	
Si	-	0.90	-	-	
S	-	0.30	-	-	
Ca	-	0.40	-	-	
Cr	-	0.90	-	-	
<u> </u>	0.20	-	-	-	

Table S.2. Chemical composition of HC SSEs revealed by EDX results

Table S.3. XPS results showing the composition (at %) and repartition of components (%)

Sample	XPS							
	C (at%)	O (at%)	*Si (at%)	C(sp ²) %	C(sp ³) %	O/C		
HC-C	96.6	2.9	0.5	91.0	2.41	0.03		
HC-D	97.7	1.7	0.5	93.7	0	0.017		

*Si amount coming from analysis tape used.

Figure S2. CO_2 adsorption isotherms (left) and CO_2 pore size distribution (right) of HC-C and HC-D self-sustained electrodes

Figure S3. SEM images of cross-section view for HC-C and HC-D samples

Figure S4. Discrimination between specific capacity contributions of galvanostatic and potentiostatic steps for samples HC-C (a,b) and HC-D (c,d) during sodiation (left side) and desodiation (right side)

Figure S5. Discrimination between specific capacity contributions of galvanostatic and potentiostatic steps for gold sputter coated samples: a),b) HC-C and c),d) HC-D during sodiation (left side) and desodiation (right side)