Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2020

#### **Supporting Information**

# Potentiodynamic Polarization Assisted Phosphorous-containing Amorphous Trimetal Hydroxide Nanofiber for

## **Highly Efficient Hybrid Supercapacitors**

Nilesh R. Chodankar<sup>a</sup>, G. Seeta Rama Raju<sup>a</sup>, Bumjun Park<sup>b</sup>, Pragati A. Shinde<sup>c</sup>, Seong Chan Jun<sup>c</sup>, Deepak P. Dubal<sup>d\*</sup>, Yun Suk Huh<sup>b\*</sup>, Young-Kyu Han<sup>a\*</sup>

<sup>a</sup>Department of Energy & Materials Engineering, Dongguk University, Seoul, 100-715, Republic of Korea

<sup>b</sup>WCSL of Integrated Human Airway-on-a-Chip, Department of Biological Engineering, Inha University, 100, Inha-ro, Incheon, 22212, Republic of Korea

<sup>c</sup>Nano-Electro Mechanical Device Laboratory, School of Mechanical Engineering, Yonsei University, Seoul, 120-749, South Korea

<sup>d</sup>School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4001, Australia

#### Corresponding author-

Dr. Deepak P. Dubal - <u>dubaldeepak2@gmail.com</u>

Prof. Yun Suk Huh - yunsuk.huh@inha.ac.kr

Prof. Young-Kyu Han - <u>ykenergy@dongguk.edu</u>

# **Supporting Information 1**

The comparative electrochemical performance for the hybrid supercapacitors reported in the literature.

| Positive                                                             | Negative  | Electrolyte | Voltage | Specific                  | Max.                | Max. Power               | Cycling   | Ref. |
|----------------------------------------------------------------------|-----------|-------------|---------|---------------------------|---------------------|--------------------------|-----------|------|
| Electrode                                                            | Electrode |             | window  | capacitance               | Energy              | density                  | stability |      |
|                                                                      |           |             | (V)     |                           | density             |                          | (%)       |      |
| MOF-derived                                                          | CNTs-     | KOH/PVA     | 1.8     | 136.4 F/g @               | 61.3                | 9.064 kW/kg              | 92.8 over | [1]  |
| Ni/NiO                                                               | СООН      |             |         | 2 mA/cm <sup>2</sup>      | Wh/kg               |                          | 10,000    |      |
|                                                                      |           |             |         |                           |                     |                          | cycles    |      |
| Co <sub>2.18</sub> Ni <sub>0.82</sub> Si <sub>2</sub> O <sub>5</sub> | Graphene  | KOH/PVA     | 1.75    | 194.3 mF/cm <sup>2</sup>  | 0.496               | 38.8                     | 96.3 over | [2]  |
| (OH) <sub>4</sub>                                                    |           |             |         | $@ 0.50 \text{ mA/cm}^2$  | mWh/cm <sup>3</sup> | mW/cm <sup>3</sup>       | 10,000    |      |
|                                                                      |           |             |         |                           |                     |                          | cycles    |      |
| Co(OH) <sub>2</sub> @Carbo                                           | Carbonize | KOH/PVA     | 1.5     | 14.19 F/cm <sup>3</sup> @ | 0.69                | 15.447 W/cm <sup>2</sup> | 85 over   | [3]  |
| nized wood (CW)                                                      | d wood    |             |         | 1 mA/cm <sup>2</sup>      | mWh/cm <sup>2</sup> | (236.8 W/kg)             | 10,000    |      |
|                                                                      | (CW)      |             |         |                           | (10.87              |                          | cycles    |      |
|                                                                      |           |             |         |                           | Wh/kg)              |                          |           |      |
| Ni-Co LDH                                                            | AC        | KOH/PVA     | 1.6     | 265 F/g at 1 A/g          | 94.5                | 15.6 kW/kg               | 80.5 over | [4]  |

|                                                                       |                                   |             |      |                           | Wh/kg                |                         | 1000       |     |
|-----------------------------------------------------------------------|-----------------------------------|-------------|------|---------------------------|----------------------|-------------------------|------------|-----|
|                                                                       |                                   |             |      |                           |                      |                         | cycles     |     |
| Ni(OH) <sub>2</sub> /NGP                                              | Mn <sub>3</sub> O <sub>4</sub> /N | NaOH/PVA    | 1.3  | 1.96 F/cm <sup>3</sup> @  | 0.35                 | 32.5 mW/cm <sup>3</sup> | 83 over    | [5] |
|                                                                       | GP                                |             |      | 50 mV/s                   | mWh/cm <sup>3</sup>  |                         | 12,000     |     |
|                                                                       |                                   |             |      |                           |                      |                         | cycles     |     |
| Ni <sub>0.85</sub> Se                                                 | AC                                | KOH/PVA     | 1.6  | 81 F/g @ 1 A/g            | 29 Wh/kg             | 5.512 kW/kg             | 81.25 over | [6] |
|                                                                       |                                   |             |      |                           |                      |                         | 5,000      |     |
|                                                                       |                                   |             |      |                           |                      |                         | cycles     |     |
| Ni <sub>20</sub> [(OH) <sub>12</sub> (H <sub>2</sub> O)               | Graphene                          | KOH/PVA     | 1.47 | 0.446 mWh/cm <sup>3</sup> | 0.446                | 44.1 mW/cm <sup>3</sup> | 97.4 over  | [7] |
| 6]                                                                    |                                   |             |      | a                         | mWh/ cm <sup>3</sup> |                         | 5,000      |     |
| [(HP <sub>4</sub> ) <sub>8</sub> (PO <sub>4</sub> ) <sub>4</sub> ].12 |                                   |             |      | 0.5 mA/cm <sup>2</sup>    |                      |                         | cycles     |     |
| H <sub>2</sub> O                                                      |                                   |             |      |                           |                      |                         |            |     |
| NiMn-LDH/CNT                                                          | RGO/CNT                           | KOH/ Nafion | 1.7  | 221 F/g @                 | 88.3                 | 17.2                    | 94 over    | [8] |
|                                                                       |                                   |             |      | of 1 A/g                  | Wh/kg                | kW/kg                   | 1,000      |     |
|                                                                       |                                   |             |      |                           |                      |                         | cycles     |     |
| NaCoPO <sub>4</sub> -Co <sub>3</sub> O <sub>4</sub>                   | Graphene                          | KOH/PVA     | 1.0  | $28.6 \text{ mF/cm}^2 @$  | 0.39                 | 50                      | 94.5 over  | [9] |

|                                                        |            |         |     | 0.1 mA/cm <sup>2</sup>   | mWh/cm <sup>3</sup> | mW/cm <sup>3</sup>    | 5,000      |      |
|--------------------------------------------------------|------------|---------|-----|--------------------------|---------------------|-----------------------|------------|------|
|                                                        |            |         |     |                          |                     |                       | cycles     |      |
| NiCo <sub>2</sub> O <sub>4</sub> @PPy                  | AC         | KOH/PVA | 1.6 | 165.4 @                  | 58.8                | 10.2                  | 89.2 over  | [10] |
|                                                        |            |         |     | 1 mA/cm <sup>2</sup>     | Wh/kg               | kW/kg                 | 5,000      |      |
|                                                        |            |         |     |                          |                     |                       | cycles     |      |
| Co <sub>3</sub> O <sub>4</sub> @C@Ni <sub>3</sub> S    | AC         | KOH/PVA | 1.8 | -                        | 1.52                | 60                    | 91.43 over | [11] |
| 2                                                      |            |         |     |                          | mWh/cm <sup>3</sup> | W/cm <sup>3</sup>     | 10,000     |      |
|                                                        |            |         |     |                          |                     |                       | cycles     |      |
| CoNi <sub>2</sub> S <sub>4</sub> /Ni                   | CNTs+GR    | KOH/PVA | 1.8 | 23.5 F/g (102            | 10.6                | 3.732 kW/kg           | 77.3 over  | [12] |
|                                                        | /Ni        |         |     | mF/cm <sup>3</sup> @ 12  | Wh/kg               |                       | 1800       |      |
|                                                        |            |         |     | mA/cm <sup>3</sup>       |                     |                       | cycles     |      |
| Ni <sub>11</sub> (HPO <sub>3</sub> ) <sub>8</sub> (OH) | Graphene   | KOH/PVA | 1.4 | 1.64 F/cm <sup>3</sup> @ | 0.45                | 33 mW/cm <sup>3</sup> | 93.3 over  | [13] |
| 6                                                      |            |         |     | 0.50 mA/cm <sup>2</sup>  | mWh/cm <sup>3</sup> |                       | 10,000     |      |
|                                                        |            |         |     |                          |                     |                       | cycles     |      |
| CoO@NiO/AC                                             | AC-textile | KOH/PVA | 1.6 | 147.6 F/g @              | 52.26               | 9.53 kW/kg            | 97.5 over  | [14] |
| textile                                                | /graphene  |         |     | $10 \text{ mA/cm}^2$     | Wh/kg               |                       | 2,000      |      |

|                                                                                |            |         |      |                           |                     |                         | cycles    |      |
|--------------------------------------------------------------------------------|------------|---------|------|---------------------------|---------------------|-------------------------|-----------|------|
| Carbon Fiber                                                                   | CF-CNT     | KOH/PVA | 1.3  | -                         | 41.1                | 3.5 kW/kg               | 98 over   | [15] |
| (CF)-Ni(OH) <sub>2</sub>                                                       |            |         |      |                           | Wh/kg               |                         | 3,000     |      |
|                                                                                |            |         |      |                           |                     |                         | cycles    |      |
| Carbon                                                                         | AC         | KOH/PVA | 1.6  | 167.3 F/g @               | 59.5                | 16 kW/kg                | 89.7 over | [16] |
| cloth@CoMoO <sub>4</sub>                                                       |            |         |      | 1 A/g                     | Wh/kg               |                         | 5000      |      |
| @NiCo LDH                                                                      |            |         |      |                           |                     |                         | cycles    |      |
| Ni <sub>3</sub> S <sub>2</sub>                                                 | 3D-rGO     | KOH/PVA | 2.2  | 105 F/g @                 | 70.58               | 33 kW/kg                | 90.4 over | [17] |
|                                                                                |            |         |      | 1 A/g                     | Wh/kg               |                         | 5000      |      |
|                                                                                |            |         |      |                           |                     |                         | cycles    |      |
| K <sub>2</sub> Co <sub>3</sub> (P <sub>2</sub> O <sub>7</sub> ) <sub>2</sub> - | Graphene   | KOH/PVA | 1.07 | 6 F/cm <sup>3</sup> @     | 0.96                | 54.5 mW/cm <sup>3</sup> | 94.4 over | [18] |
| $2H_2O$                                                                        |            |         |      | 10 mA/cm <sup>3</sup>     | mWh/cm <sup>3</sup> |                         | 5,000     |      |
|                                                                                |            |         |      |                           |                     |                         | cycles    |      |
| NiO+Co <sub>3</sub> O <sub>4</sub>                                             | Polypyrrol | KOH/PVA | 1.5  | 14.69 F/cm <sup>3</sup> @ | 3.83                | 29 mWh/cm <sup>3</sup>  | 91 over   | [19] |
|                                                                                | e          |         |      | 25 mA/cm <sup>3</sup>     | mWh/cm <sup>3</sup> |                         | 6000      |      |
|                                                                                |            |         |      |                           |                     |                         | cycles    |      |

| FeCo <sub>2</sub> O <sub>4</sub> @   | AC                 | KOH/PVA  | 1.6 | 194 F/g @   | 68.8  | 15.5 kW/kg | 91 over    | [20] |
|--------------------------------------|--------------------|----------|-----|-------------|-------|------------|------------|------|
| polypyrrole                          |                    |          |     | 1 A/g       | Wh/kg |            | 5000       |      |
|                                      |                    |          |     |             |       |            | cycles     |      |
| Ni(OH) <sub>2</sub> @                | AC                 | KOH/PVA  | 0.8 | 80.44 F/g @ | 7.15  | 118 W/kg   | 75 over    | [21] |
| sulfonated                           |                    |          |     | 0.05 A/g    | Wh/kg |            | 1000       |      |
| graphene                             |                    |          |     |             |       |            | cycles     |      |
| CuCo <sub>2</sub> S <sub>4</sub>     | MoO <sub>2</sub> @ | KOH/PVA  | 1.6 | 184 F/g @   | 65.1  | 12.8 kW/kg | 90.6 over  | [22] |
|                                      | N-doped            |          |     | 1 A/g       | Wh/kg |            | 5000       |      |
|                                      | carbon             |          |     |             |       |            | cycles     |      |
| NiCo <sub>2</sub> S <sub>4</sub> @   | AC                 | KOH/PVA  | 1.6 | 187.3 F/g @ | 66.6  | 16 kW/kg   | 85.6 over  | [23] |
| CoMoO <sub>4</sub>                   |                    |          |     | 1 A/g       | Wh/kg |            | 5000       |      |
|                                      |                    |          |     |             |       |            | cycles     |      |
| NiMoO <sub>4</sub> -PANI             | AC                 | KOH/PVA  | 1.6 | 93 F/g @    | 33.07 | 5.2 kW/kg  | 98.6 after | [24] |
|                                      |                    |          |     | 0.3 A/g     | Wh/kg |            | 5,000      |      |
|                                      |                    |          |     |             |       |            | cycles     |      |
| NiCo <sub>2</sub> O <sub>4</sub> /CC | Porous             | LiOH/PVA | 1.8 | 71.32 F/g @ | 60.9  | 11.36      | 96.8 over  | [25] |

|                                                       | graphene                          |         |      | 5 mA/cm <sup>2</sup>     | Wh/kg               | kW/kg              | 5,000     |      |
|-------------------------------------------------------|-----------------------------------|---------|------|--------------------------|---------------------|--------------------|-----------|------|
|                                                       | paper                             |         |      |                          |                     |                    | cycles    |      |
|                                                       | (PGP)                             |         |      |                          |                     |                    |           |      |
| Co <sub>9</sub> S <sub>8</sub>                        | Co <sub>3</sub> O <sub>4</sub> @R | KOH/PVA | 1.6  | 4.28 F/cm <sup>3</sup> @ | 1.44                | 0.89               | 90.2 over | [26] |
|                                                       | uO <sub>2</sub>                   |         |      | $2.5 \text{ mA/cm}^2$    | mWh/cm <sup>3</sup> | W/cm <sup>3</sup>  | 2,000     |      |
|                                                       |                                   |         |      |                          |                     |                    | cycles    |      |
| MOF-derived                                           | MOF-                              | KOH/PVA | 1.5  | 1.99 F/cm <sup>3</sup> @ | 0.71                | 207                | 87.9 over | [27] |
| CoO@S-Co <sub>3</sub> O <sub>4</sub>                  | derived                           |         |      | 2 mA/cm <sup>2</sup>     | mWh/cm <sup>3</sup> | mW/cm <sup>3</sup> | 5,000     |      |
|                                                       | carbon                            |         |      |                          |                     |                    | cycles    |      |
| Co <sub>11</sub> (HPO <sub>3</sub> ) <sub>8</sub> (OH | Graphene                          | KOH/PVA | 1.38 | 1.84 F/cm <sup>3</sup> @ | 0.48                | 105                | 98.7 over | [28] |
| ) <sub>6</sub> -Co <sub>3</sub> O <sub>4</sub>        |                                   |         |      | $0.5 \text{ mA/cm}^2$    | mWh/cm <sup>3</sup> | mW/cm <sup>3</sup> | 2,000     |      |
|                                                       |                                   |         |      |                          |                     |                    | cycles    |      |
| CoMoO <sub>4</sub> /PPy                               | AC                                | KOH/PVA | 1.7  | -                        | 104.7               | 971.43             | 95 over   | [29] |
|                                                       |                                   |         |      |                          | Wh/kg               | W/kg               | 2,000     |      |
|                                                       |                                   |         |      |                          |                     |                    | cycles    |      |
| Polypyrrole/Ni(O                                      | AC                                | KOH/PVA | 1.6  | 224 F/g @                | 79.6                | 7.97 kW/kg         | 60 over   | [30] |

| H) <sub>2</sub> /sulfonated           |          |         |     | 1 A/g                      | Wh/kg               |                    | 5,000      |      |
|---------------------------------------|----------|---------|-----|----------------------------|---------------------|--------------------|------------|------|
| GO                                    |          |         |     |                            |                     |                    | cycles     |      |
| Ni-Mo-S                               | Ni-Fe-S  | KOH/PVA | 1.6 | 103 mAh/g @                | 82.13               | 13.103 kW/kg       | 95.86 over | [31] |
|                                       |          |         |     | 2 mA/cm <sup>2</sup>       | Wh/kg               |                    | 10,000     |      |
|                                       |          |         |     |                            |                     |                    | cycles     |      |
| CoMoO <sub>4</sub> @Co <sub>1.5</sub> | AC       |         | 1.6 | 221.3 F/g @                | 127.86              | 6.587 kW/kg        | 96.3 over  | [32] |
| Ni <sub>1.5</sub> S <sub>4</sub>      |          |         |     | 1.5 A/g                    | Wh/kg               |                    | 2,000      |      |
|                                       |          |         |     |                            |                     |                    | cycles     |      |
| Cobalt carbonate                      | N-doped  | KOH/PVA | 1.9 | 153.5 mF/cm <sup>2</sup> @ | 0.77                | 25.3               | 93.6 over  | [33] |
| hydroxide/N-                          | graphene |         |     | 1.0 mA/cm <sup>2</sup>     | Wh/m <sup>2</sup>   | W/m <sup>2</sup>   | 2,000      |      |
| doped graphene                        |          |         |     |                            |                     |                    | cycles     |      |
| NiS/Ni <sub>3</sub> S <sub>2</sub>    | AC       | KOH/PVA | 1.7 | 0.34 mAh/cm <sup>2</sup>   | 0.289               | 12.825             | 86.7 over  | [34] |
|                                       |          |         |     | @                          | mWh/cm <sup>2</sup> | mW/cm <sup>2</sup> | 8,000      |      |
|                                       |          |         |     | 2 mA/cm <sup>2</sup>       |                     |                    | cycles     |      |
| S@Ni-MOF                              | AC       | KOH/PVA | 1.6 | 136.5 F/g @                | 56.85               | 4.1 kW/kg          | 86.67 over | [35] |
|                                       |          |         |     | 1 A/g                      | Wh/kg               |                    | 20,000     |      |

|                                                       |         |         |     |                           |                     |                        | cycles     |      |
|-------------------------------------------------------|---------|---------|-----|---------------------------|---------------------|------------------------|------------|------|
| Ni <sub>0.1</sub> Co <sub>0.8</sub> Mn <sub>0.1</sub> | PAN-    | KOH/PVA | 1.6 | 147 F/g @                 | 52.47               | 8 kW/kg                | 89.5 over  | [36] |
|                                                       | derived |         |     | 1 A/g                     | Wh/kg               |                        | 10,000     |      |
|                                                       | carbon  |         |     |                           |                     |                        | cycles     |      |
| Mn-Silicate                                           | AC      | KOH/PVA | 1.2 | 1.048 F/cm <sup>2</sup> @ | 4.6                 | 80 mW/cm <sup>3</sup>  | 32 over    | [37] |
|                                                       |         |         |     | 2 mA/cm <sup>2</sup>      | mWh/cm <sup>3</sup> |                        | 900 cycles |      |
| Co-Silicate                                           | AC      | KOH/PVA | 1.5 | 0.375 F/cm <sup>2</sup> @ | 2.6                 | 98 mW/cm <sup>3</sup>  | 45 over    | [37] |
|                                                       |         |         |     | 2 mA/cm <sup>2</sup>      | mWh/cm <sup>3</sup> |                        | 2,800      |      |
|                                                       |         |         |     |                           |                     |                        | cycles     |      |
| Ni-Silicate                                           | AC      | KOH/PVA | 1.6 | 0.12 F/cm <sup>2</sup> @  | 0.93                | 102 mW/cm <sup>3</sup> | 42 over    | [37] |
|                                                       |         |         |     | 2 mA/cm <sup>2</sup>      | mWh/cm <sup>3</sup> |                        | 3,000      |      |
|                                                       |         |         |     |                           |                     |                        | cycles     |      |
| PPy@NiCo(OH) <sub>2</sub>                             | AC      | KOH/PVA | 1.4 | 307 F/g @                 | -                   | -                      | 93 over    | [38] |
|                                                       |         |         |     | 1 A/g                     |                     |                        | 5,000      |      |
|                                                       |         |         |     |                           |                     |                        | cycles     |      |
| CuGa <sub>2</sub> O <sub>4</sub> /NF                  | FeP/NF  | KOH/PVA | 1.5 | 202 F/g @                 | 63.15               | 9 kW/kg                | 90 over    | [39] |

|                                         |          |         |     | 1 A/g                      | Wh/kg               |                          | 5,000      |      |
|-----------------------------------------|----------|---------|-----|----------------------------|---------------------|--------------------------|------------|------|
|                                         |          |         |     |                            |                     |                          | cycles     |      |
| CoSe                                    | AC       | KOH/PVA | 1.4 | 18.1 mF/cm <sup>2</sup> @  | 0.17                | 33.16 mW/cm <sup>3</sup> | 96.7 over  | [40] |
|                                         |          |         |     | 0.5 mA/cm <sup>2</sup>     | mWh/cm <sup>3</sup> |                          | 5,000      |      |
|                                         |          |         |     |                            |                     |                          | cycles     |      |
| NiCo <sub>2</sub> O <sub>4</sub> -GO/CF | P-doped  | KOH/PVA | 2.0 | 73.3 F/cm <sup>3</sup> @   | 36.77               | 1068                     | 97 over    | [41] |
|                                         | GO/CF    |         |     | 0.146 A/cm <sup>3</sup>    | mWh/cm <sup>3</sup> | mWh/cm <sup>3</sup> (1.5 | 2,000      |      |
|                                         |          |         |     | (100 F/g @ 0.21            | (50.6               | kW/kg)                   | cycles     |      |
|                                         |          |         |     | A/g)                       | Wh/kg)              |                          |            |      |
|                                         |          |         |     |                            |                     |                          |            |      |
| NiCo <sub>2</sub> S <sub>4</sub>        | rGO-     | KOH/PVA | 1.5 | 110.8 F/g @                | 22.21               | -                        | No Loss    | [42] |
|                                         | hydrogel |         |     | 2 A/g                      | Wh/kg               |                          | after 5000 |      |
|                                         |          |         |     |                            |                     |                          | cycles     |      |
| Ni(OH) <sub>2</sub> @NiCo <sub>2</sub>  | VN@CNT   | KOH/PVA | 1.6 | 291.9 mF/cm <sup>2</sup>   | 0.1038              | 8 mW/cm <sup>2</sup>     | 87.2 over  | [43] |
| O <sub>4</sub> @CNTF                    | F        |         |     | $(106.1 \text{ F/cm}^3)$ @ | mWh/cm <sup>2</sup> |                          | 5000       |      |
|                                         |          |         |     | 1 mA/cm <sup>2</sup>       |                     |                          | cycles     |      |

| Graphite                                  | AC                | KOH/PVA  | 1.8 | 95.11 F/g @                | 42.85               | 4.5 kW/kg         | 93.2 over  | [44] |
|-------------------------------------------|-------------------|----------|-----|----------------------------|---------------------|-------------------|------------|------|
| nanosheet@CoM                             |                   |          |     | 1 A/g                      | Wh/kg               |                   | 8000       |      |
| oS <sub>4</sub>                           |                   |          |     |                            |                     |                   | cycles     |      |
| NiO@carbon                                | N-Carbon          | KOH/PVA  | 1.5 | 62.4 F/g @                 | 19.5                | 11.5 kW/kg        | -          | [45] |
| nanofibers/CC                             | nanofibers        |          |     | $20 \text{ mA/cm}^2$       | Wh/kg               |                   |            |      |
|                                           | /CC               |          |     |                            |                     |                   |            |      |
| NiCo <sub>2</sub> O <sub>4</sub>          | N-doped           | KOH/PVA- | 1.6 | 120 F/g @                  | 42.7                | 8 kW/kg           | 94 over    | [46] |
|                                           | porous            | PEO      |     | 1 A/g                      | Wh/kg               |                   | 10,000     |      |
|                                           | carbons           |          |     |                            |                     |                   | cycles     |      |
| MnO <sub>2</sub>                          | CoSe <sub>2</sub> | LiCl/PVA | 1.6 | 1.77 F/cm <sup>3</sup> @ 1 | 0.588               | 0.282             | 94.8 after | [47] |
|                                           |                   |          |     | mA/cm <sup>2</sup>         | mWh/cm <sup>3</sup> | W/cm <sup>3</sup> | 2,000      |      |
|                                           |                   |          |     |                            |                     |                   | cycles     |      |
| Ti <sub>3</sub> C <sub>2</sub> /Ni-Co-Al- | AC                | KOH/PVA  | 1.6 | 128.89 F/g @               | 45.8                | 6.93 kW/kg        | 97.8 after | [48] |
| LDH                                       |                   |          |     | 0.5 A/g                    | Wh/kg               |                   | 10,000     |      |
|                                           |                   |          |     |                            |                     |                   | cycles     |      |
| NiCoAl-                                   | AC                | КОН      | 1.6 | 194 F/g @ 1 A/g            | 71.7                | 20000 W/kg        | 98 % after | [49] |

| LDH/V <sub>4</sub> C <sub>3</sub>                     |         |          |     |                            | Wh/kg               |                          | 10,000  |      |
|-------------------------------------------------------|---------|----------|-----|----------------------------|---------------------|--------------------------|---------|------|
|                                                       |         |          |     |                            |                     |                          | cycles  |      |
| NiCo <sub>2</sub> Al-LDH                              | MOF     | KOH/PVA  | 1.5 | 144 F/g @ 0.5              | 44 Wh/kg            | 6286 W/kg                | 91.2 %  | [50] |
|                                                       | derived |          |     | A/g                        |                     |                          | after   |      |
|                                                       | porous  |          |     |                            |                     |                          | 15,000  |      |
|                                                       | carbón  |          |     |                            |                     |                          | cycles  |      |
| Ni-V-LDH                                              | AC      | KOH/LiCl | 1.6 | 91 mF/cm <sup>2</sup> @    | 0.24 mW             | 214.4 mW/cm <sup>3</sup> | 100 %   | [51] |
|                                                       |         |          |     | 0.1 mA/cm <sup>2</sup>     | h/cm <sup>3</sup>   |                          | after   |      |
|                                                       |         |          |     |                            |                     |                          | 15,000  |      |
|                                                       |         |          |     |                            |                     |                          | cycles  |      |
| MnSi                                                  | AC      | KOH/PVA  | 1.2 | 1048.3 mF/cm <sup>2</sup>  | 4.6                 | -                        | 1000    | [52] |
|                                                       |         |          |     | $@ 2 \text{ mA/cm}^2$      | mWh/cm <sup>3</sup> |                          | cycles  |      |
|                                                       |         |          |     |                            |                     |                          |         |      |
| Ni <sub>2</sub> P <sub>2</sub> O <sub>7</sub> /Ni-Co- | AC      | KOH/PVA  | 1.6 | 2.99 F/cm <sup>3</sup> @ 2 | 78 Wh/kg            | 2814 W/kg                | 91.83 % | [53] |
| hydroxide                                             |         |          |     | mA/cm <sup>2</sup>         |                     |                          | after   |      |
|                                                       |         |          |     |                            |                     |                          | 10,000  |      |

|                    |    |         |     |               |          |           | cycles  |      |
|--------------------|----|---------|-----|---------------|----------|-----------|---------|------|
|                    |    |         |     |               |          |           |         |      |
| $MnO_2@Ni_2P_2O_7$ | AC | KOH/PVA | 1.6 | 82 mA h/g @ 1 | 66 Wh/kg | 1920 W/kg | 91.83 % | [54] |
|                    |    |         |     | _             |          |           |         |      |
|                    |    |         |     | A/g           |          |           | after   |      |
|                    |    |         |     |               |          |           |         |      |
|                    |    |         |     |               |          |           | 10,000  |      |
|                    |    |         |     |               |          |           | 10,000  |      |
|                    |    |         |     |               |          |           | avalaa  |      |
|                    |    |         |     |               |          |           | cycles  |      |
|                    |    |         |     |               |          | 1         |         |      |

#### **Supporting Information 2**

**Experimental details:** All required chemicals were purchased from the Sigma-Aldrich including the Cobalt nitrate  $(Co(NO_3)_2 \cdot _6H_2O)$ , ruthenium(III) chloride hydrate  $(RuCl_3 \cdot xH_2O)$ , potassium phosphate monobasic, KOH and hydrochloric acid (HCl). All the required solutions was prepared in the deionised (DI) water. Prior to the deposition of material, the nickel foam was cleaned with the 2 m HCl, DI water, and acetone and then dried at 25 °C for 6 h. To prepare the nickel ruthenium cobalt hydroxide (NRC-OH) thin film over the Ni foam, the potentiodynamic polarization was used for different deposition cycles. The growth solution was prepared by dissolving the 0.01 M of  $Co(NO_3)_2 \cdot 6H_2O$  and  $RuCl_3 \cdot xH_2O$  in 40 ml of DI water with continuous stirring for 30 min. Note that the Ni foam itself acts as a source of the Ni. The deposition was carried out in standard three electrode system in which the Ni foam (1 x 2 cm), saturated

calomel electrode (SCE), platinum was used as a working, reference and counter electrode within potential window of -1.0 to 0 V/SCE. The deposition was carried out for the 50, 100 and 150 cycles to optimise the proper nanostructure for the SCs application. Among that, NRC-OH100 sample shows the good electrochemical features and therefore it is used for the P-doping. To prepare the P@NRC-OH electrode, the same precursor solution was used and which is diluted with the 0.1 M of potassium phosphate monobasic (5 ml). The deposition was carried out for the 100 cycles. The calculated mass loading of the deposited material over the Ni foam current collector varies from the 1.1 to 1.46 mg/cm<sup>2</sup>. The mass loading of the electroactive material is calculated by taking the mass difference of the current collector before and after deposition of the electroactive material.

**Electrochemical Measurement:** To decide the best electrode for the SC application, initially three electrode electrochemical measurements was performed in the 2 M KOH electrolyte. The CV, GCD and EIS measurements was performed with the Zive sp1 electrochemical workstation. The EIS measurements was performed in the frequency range of 100 kHZ to 10 mHZ at constant bias potential of 10 mV. The CV and GCD measurements was performed at various scanning rate and current densities within potential window of the 0-0.6 V/SCE and 0-0.4 V/SCE, respectively. The two electrode electrochemical measurements was carried out by assembling the hybrid solid state supercapacitor (HSSC) in which P@NRC-OH electrode was used as positive electrode and activated carbon (AC) electrode as a negative electrode in PVA-KOH gel electrolyte. The AC electrode was prepared by using the traditional slurry coating method. To prepare the AC electrode the 80 wt% commercial activated carbon, 10 wt% acetylene black, 5 wt% PVDF, and a small amount of ethanol was prepared by milling to produce a homogeneous paste. The prepared paste was loaded on the nickel foam and heated at 150 °C for 30 min to obtain a well-adherent film of activated carbon. The PVA-KOH gel electrolyte was prepared

by mixing 2 M KOH and 2 g of PVA in 20 ml of DI water at 70 °C for 20 min while stirring. The formed transparent gel-like solution was used to assemble the hybrid solid-state supercapacitor.

#### Calculations

Prior to assemble the HSSC, the mass balancing was carried out from positive to negative electrode by using the following relation;

$$\frac{m_{+}}{m_{-}} = \frac{C_{-}V_{-}}{C_{+}V_{+}}$$
(S1)

Where, m, C and V are the mass (m/cm<sup>2</sup>), capacitance and the potential window for the positive and negative electrode. The calculated mass ration from the positive to negative electrode is 1:4.88. Furthermore, the specific capacity, areal capacitance, specific energy and specific power were calculated by considering the following equations;

#### Specific capacity from the CV

Specific capacity 
$$(Ah/g) = \frac{\int i(V)dV (A.V)}{m(g) \times \vartheta(V/s) \times 3600}$$
 (S2)

where, the integration of current over voltage window will give the total voltammetric charge in A.V (ampere\*volts). v is scan rate and m is the mass loading.

#### Specific capacity from the GCD

Specific capacity 
$$(mA h/g) = \frac{i.\Delta t}{m. 3.6}$$
 (S3)

where, I is the applied current,  $\Delta t$  is the discharging time, m is the mass loading.

## Areal capacitance

$$areal \ capacitance = \frac{i \int v dt}{AV}$$
(S4)

where,  $\Delta V$  is the voltage window.

### Specific energy (Wh/kg) and specific power (W/kg)

Specific energy = 
$$\frac{C.\Delta V^2}{2 \times 3600}$$
 (S5)

$$Specific power = \frac{3600 \times specific energy}{\Delta t}$$
(S6)

## **Energy efficiency**

$$energy \ effeciency \ (\%) = \frac{discharge \ specific \ energy \ \times \ 100}{charge \ specific \ energy}$$
(S7)

### **Supporting Information 3**



Fig. S1 core-level O1s XPS spectra for the P@NRC-OH sample



Fig. S2 the electrochemical surface area (ECSA) for all samples.



Fig. S3 the CV curves for the P@NRC-OH electrode at scanning rate of 1, 2, 3, 4, 5 mV/s.

## References

| [1]  | Y. Jiao, W. Hong, P. Li, L. Wang, G. Chen, Appl. Cat. B: Environ. 2019, 244, 732-739                                   |
|------|------------------------------------------------------------------------------------------------------------------------|
| [2]  | J. Zhao, M. Zheng, Z. Run, J. Xia, M. Sun, H. Pang, J. Power Sources, 2015, 285, 385.                                  |
| [3]  | Y. Wang, X. Lin, T. Liu, H. Chen, S. Chen, Z. Jiang, J. Liu, J. Huang, M. Liu, Adv. Funct. Mater. 2018, 28, 1806207    |
| [4]  | W. Zou, W. Guo, X. Liu, Y. Luo, Q. Ye, X. Xu, F. Wang, Chem. Eur. J. 2018, 24, 19309-19316                             |
| [5]  | J. X. Feng, S. H. Ye, X. F. Lu, Y. X. Tong, G. R. Li, ACS Appl. Mater. Interfaces, 2015, 7, 11444.                     |
| [6]  | A. Ye, Y. Sui, J. Qi, F. Wei, Y. He, Q. Meng, Y. Ren, Z. Sun, J. Electronic Mater. 2018, 47, 7002-7010                 |
| [7]  | J. Zhao, S. Wang, Z. Run, G. Zhang, W. Du, H. Pang, Part. Part. Syst. Charact., 2015, 32, 880.                         |
| [8]  | J. Zhao, J. Chen, S. Xu, M. Shao, Q. Zhang, F. Wei, J. Ma, M. Wei, D. G. Evans, X. Duan, Adv. Funct. Mater., 2014, 24, |
|      | 2938.                                                                                                                  |
| [9]  | C. Wei, C. Cheng, B. Zhou, X. Yuan, T. Cui, S. Wang, M. Zheng, H. Pang, Part. Part. Syst. Charact. 2015, 32, 831.      |
| [10] | D. Kong, W. Ren, C. Cheng, Y. Wang, Z. Huang, H. Y. Yang, ACS Appl. Mater. Interfaces, 2015, 7, 21334.                 |
| [11] | D. Kong, C. Cheng, Y. Wang, J. I. Wong, Y. Yang, H. Y. Yang, J. Mater. Chem. A, 2015, 3, 16150.                        |
| [12] | J. Song, Y. Chen, K. Cao, Y. Lu, J. H. Xin, X. Tao, ACS Appl. Mater. Interfaces 2018, 10, 39839                        |
| [13] | Y. Gao, J. Zhao, Z. Run, G. Zhang, H. Pang, <i>Dalton Trans.</i> , 2014, 43, 17000.                                    |
| [14] | Z. Gao, N. Song, X. Li, J. Mater. Chem. A, 2015, 3, 14833.                                                             |

| [15] | D. Ghosh, M. Mandal, C. K. Das, Langmuir, 2015, 31, 7835.                                                                   |
|------|-----------------------------------------------------------------------------------------------------------------------------|
| [16] | Y. Zhao, X. He, R. Chen, Q. Liu, J. Liu, J. Yu, J. Li, H. Zhang, H. Dong, M. Zhang, J. Wang, Chem. Eng. J. 2018, 352, 29-   |
| [10] | 38                                                                                                                          |
| [17] | C. Zhang, S. Wang, S. Tang, S. Wang, Y. Li, Y. Du, Appl. Surf. Sci. 2018, 458, 656-664                                      |
| [18] | H. Pang, Y. Zhang, W. Y. Laib, Z. Huc, W. Huang, Nano Energy, 2015, 15, 303.                                                |
| [19] | J. Wen, B. Xu, J. Zhou, Y. Chen, J. Power Sources 2018, 402, 91-98                                                          |
| [20] | X. He, Y. Zhao, R. Chen, H. Zhang, J. Liu, Q. Liu, D. Song, R. Li, J. Wang, ACS Sustainable Chem. Eng. 2018, 6, 14945–14954 |
| [21] | H. Gao, C. Hao, Y. Qi, J. Li, X. Wang, S. Zhou, C. Huang, J. Alloys Comp. 2018, 767, 1048-1056                              |
| [22] | S. Liu, Y. Yin, K. S. Hui, K. N. Hui, S. C. Lee, S. C. Jun, Adv. Sci. 2018, 5, 1800733                                      |
| [23] | Y. Zhao, X. He, R. Chen, Q. Liu, J. Liu, D. Song, H. Zhang, H. Dong, R. Li, M. Zhang, J. Wang, Appl. Surf. Sci. 2018, 453,  |
| [20] | 73-82                                                                                                                       |
| [24] | H. Gao, F. Wu, X. Wang, C. Hao, C. Ge, Int. J. Hydrogen Energy, 2018, 43, 18349-18362                                       |
| [25] | Z. Gao, W. Yang, J. Wang, N. Song, X. Li, Nano Energy, 2015, 13, 306.                                                       |
| [26] | J. Xu, Q. Wang, X. Wang, Q. Xiang, B. Liang, D. Chen, G. Shen, ACS nano, 2013, 7, 5453.                                     |
| [27] | S. Dai, Y. Yuan, J. Yu, J. Tang, J. Zhou, W. Tang, Nanoscale, 2018, 10, 15454–15461                                         |
| [28] | Y. Zhang, M. Zheng, M. Qu, M. Sun, H. Pang, J. Alloys Compd., 2015, 651, 214.                                               |

| [29] | Y. Chen, B. Liu, Q. Liu, J. Wang, Z. Li, X. Jing, L. Liu, Nanoscale, 2015, 7, 15159.                                  |
|------|-----------------------------------------------------------------------------------------------------------------------|
| [30] | J. Li, C. Hao, S. Zhou, C. Huang, X. Wang, <i>Electrochim. Acta</i> 2018, 283, 467-477                                |
| [31] | J. Balamurugan, C. Li, V. Aravindan, N. H. Kim, J. H. Lee, Adv. Funct. Mater. 2018, 28, 1803287                       |
| [32] | C. Wang, Z. Guan, Y. Shen, S. Yu, X. Z. Fu, R. Sun, C. P. Wong, Chem. Eng. J. 2018, 346, 193-202                      |
| [33] | H. Xie, S. Tang, J. Zhu, S. Vongehr, X. Meng, J. Mater. Chem. A, 2015, 3, 18505.                                      |
| [34] | F. Chen, H. Wang, S. Ji, V. Linkov, R. Wang, Mater. Today Energy 2019, 11, 211-217                                    |
| [35] | L. Yue, H. Guo, X. Wang, T. Sun, H. Liu, Q. Li, M. Xu, Y. Yang, W. Yang, J. Colloid Interface Sci. 2019, 539, 370-378 |
| [36] | Y. Liu, N. Liu, L. Yu, X. Jiang, X. Yan, Chem. Eng. J. 2019, 362, 600-608                                             |
| [37] | Q. Wang, Y. Zhang, H. Jiang, X. Li, Y. Cheng, C. Meng, Chem. Eng. J. 2019, 362, 818-829                               |
| [38] | X. Wu, M. Lian, Q. Wang, <i>Electrochim. Acta</i> 2019, 295, 655-661                                                  |
| [39] | A. M. Zardkhoshoui, S. S. H. Davarani, J. Alloys Comp. 2019, 773, 527-536                                             |
| [40] | X. Zhang, J. Gong, K. Zhang, W. Zhu, J. C. Li, Q. Ding, J. Alloys Comp. 2019, 772, 25-32                              |
| [41] | C. Zhou, T. Gao, Y. Wang, Q. Liu, Z. Huang, X. Liu, M. Qing, D. Xiao, Small 2019, 15, 1803469                         |
| [42] | F. Lu, M. Zhou, K. Su, T. Ye, Y. Yang, T. D. Lam, Y. Bando, X. Wang, ACS Appl. Mater. Interfaces 2019, 11, 2082-2092  |
| [43] | X. Wang, J. Sun, J. Zhao, Z. Zhou, Q. Zhang, C. Wong, Y. Yao, J. Phys. Chem. C 2019, 123, 985-993                     |
| [44] | M. Wei, C. Wang, Y. Yao, S. Yu, W. H. Liao, J. Rene, R. Sun, C. P. Wong, Chem. Eng. J. 2019, 355, 891-900             |

| [45] | Y. N. Liu, J. N. Zhang, H. T. Wang, X. H. Kang, S. W. Bian, Mater. Chem. Front., 2019, 3, 25-31                                 |
|------|---------------------------------------------------------------------------------------------------------------------------------|
| [46] | Y. Liu, X. Wang, X. Jiang, X. Li, L. Yu, Nanoscale, 2018, 10, 22848-22860                                                       |
| [47] | N. Yu, M. Q. Zhu, D. Chen, J. Mater. Chem. A, 2015, 3, 7910.                                                                    |
| [48] | R. Zhao, M. Wang, D. Zhao, H. Li, C. Wang, L. Yin, ACS Energy Lett., 2018, 3, 132-140                                           |
| [49] | X. Wang, H. Li, H. Li, S. Lin, J. Bai, J. M. Dai, C. H. Liang, X. B. Zhu, Y. P. Sun, S. X. Dou, J. Mater. Chem. A 2019, 7, 2291 |
| [50] | X. Gao, X. Liu, D. Wu, B. Qian, Z. Kou, Z. Pan, Y. Pang, L. Miao, J. Wang, Adv. Funct. Mater. 2019, 1903879                     |
| [51] | A. Tyagi, M. Joshi, K. Agarwal, B. Balasubramaniam, R. K. Gupta, Nanoscale Adv., 2019, 1, 2400–2407.                            |
| [52] | Q. Wang, Y. Zhang, H. Jiang, X. Li, Y. Cheng, C. Meng, Chemical Engineering Journal 2019, 362, 818-829.                         |
| [53] | N. R. Chodankar, D. P. Dubal, Su-Hyeon Ji, Do-Heyoung Kim, Small 2019, 15, 1901145                                              |
| [54] | N. R. Chodankar, D. P. Dubal, S. J. Patil, G. Raju, S. V. Karekar, Y. S. Huh, Young-Kyu Han, Electrochimica Acta 2019, 319,     |
|      | 435.                                                                                                                            |