Supporting Information

Ultrafine Carbon Encapsulated NiRu Alloys as Bifunctional Electrocatalyst Boosting Overall-Water-Splitting: Morphological and Electronic Modulation through Minor Ru Alloying

Qifeng Yang^a, Peng Jin^{b,*}, Bing Liu^c, Liang Zhao^a, Jiahao Cai^a, Zhan Wei^b, Shouwei Zuo^c, Jing Zhang^c, Lai Feng^{a,*}

^aCollege of Energy, Soochow Institute for Energy and Materials InnovationS & Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China ^bSchool of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China

^cBeijing Synchrotron Radiation Facility (BSRF), Institute of High Energy Physics of the Chinese Academy of Sciences, Beijing, 100049, China

Corresponding authors.

E-mail: <u>fenglai@suda.edu.cn</u> (L. Feng)

china.peng.jin@gmail.com (P. Jin)

Figure S1. (a) AFM height image of graphene nanosheets and (b) their Raman spectrum obtained using λ_{ex} =514 nm.

The AFM image and corresponding height profile reveal that the graphene nanosheet has a thickness of ca. 5 nm, indicative of 7-10 graphene layers. The lateral size of graphene nanosheet is around a few micrometers. Besides, the Raman spectrum shows very weak G band at 1356 cm⁻¹ and very strong D band at 1580 cm⁻¹ along with evident 2D band at 2716 cm⁻¹. All these spectral feature reveal that the graphene nanosheets are less-defective.

Figure S2. TEM image of nano-sized Ru NPs.

The calibration of Hg/HgO electrode was performed in a standard three-electrode system with a Pt wire as the working and counter electrodes, and the Hg/HgO as the reference electrode. Electrolyte was pre-purged and saturated with high purity H₂. Linear scanning voltammetry (LSV) is then run at a scan rate of 0.5 mV s⁻¹, and the potential at which the current crossed zero is taken to be the thermodynamic potential for the hydrogen electrode reactions. For example, in 1 M KOH, the zero current point is at -0.923 V, so E (RHE) = E (Hg/HgO) + 0.923 V.

Figure S4. TEM image of Ni_{0.6}Ru_{0.4}@C NPs.

Figure S5. TEM image of Ni@C NPs.

Figure S6. XRD spectra of *e*-Ni_{0.6}Ru_{0.4}@C, Ni_{0.6}Ru_{0.4}@C and Ni@C.

Figure S7. Raman spectra of *e*-Ni_{0.6}Ru_{0.4}@C, Ni_{0.6}Ru_{0.4}@C and Ni@C.

Figure S8. (a) XPS survey and (b) Ni 2p, (c) Ru 3p spectra of Ni_{0.6}Ru_{0.4}@C NPs.

Figure S9. (a) XPS survey and (b) N1s spectra of *e*-Ni_{0.6}Ru_{0.4}@C NPs.

Figure S10. (a) XPS survey and (b) Ru 3p spectra of Ru NPs.

Figure S11. Electrochemical properties of the *e*-Ni_{0.6}Ru_{0.4}@C catalysts prepared from the NiCl₂ and RuCl₃ with different molar ratios. (a) HER polarisation curves (iR-corrected) for a scan rate of 1 mV·S⁻¹ in 1 M KOH electrolyte. (b) Plot of the overpotential (η_{100}) at 100 mA/cm⁻² as a function of Ni/Ru ratio.

Figure S12. HER mass activities of various catalysts: (a,b) HER polarization curves measured in 1 M KOH with catalyst loading of 0.36 mg/cm², scan rate 5 mV/s and normalized with catalyst or Pt mass loading.

Figure S13. CV curves of (a) e-Ni_{0.6}Ru_{0.4}@C, (b) Ni_{0.6}Ru_{0.4}@C and (c) Ni@C with

various scan rates.

Figure S14. Electrochemical properties of the *e*-Ni_{0.6}Ru_{0.4}@C catalysts prepared from the NiCl₂ and RuCl₃ with different molar ratios. (a) OER polarisation curves (iRcorrected) for a scan rate of 1 mV·S⁻¹ in 1 M KOH electrolyte. (b) Plot of the overpotential (η_{100}) at 100 mA/cm⁻² as a function of Ni/Ru ratio.

Figure S15. IR-corrected polarization curves of e-Ni_{0.6}Ru_{0.4}@C, Pt/C and RuO₂ for HER and OER, respectively, in 1 M KOH.

Figure S16. TEM image of the e-Ni_{0.6}Ru_{0.4}@C catalyst stripped off the carbon fiber

substrate after the CP test.

Figure S17. Density of states and partial density of states of the C_{240} carbon cage,

 $Ni_{55} @C_{240} \text{ and } Ni_{43} Ru_{12} @C_{240} \text{ models}.$

Table S1. Summary of the performances of the M@carbon based electrocatalysts for

Catalyst	η_{10} for HER (mV)	η_{10} for OER (mV)	η_{10} for OWS (V)	reference
NiRu@C	33	250	$1.51/1.62 (\eta_{100})^{a}_{ir}$	This work
Co _{0.31} Mo _{1.69} C/MXene/NC	75			1
Co@NPC-H		350		2
hcp-NiFe@NC		226		3
NiFe-N-CNT	250	270	1.58 ^b _{ir}	4
Ni QD@NC@rGO	133	265	1.563 ^a _{ir}	5
CoP@3D-NPC	203			6
OsP ₂ @NPC	90			7
Co/β-Mo ₂ C@N-CNT	170	356	1.64 ^b _{ir}	8
Ni/Mo ₂ C-NCNFs	133	288	1.64 ^b _{ir}	9
Co-NC@ Mo ₂ C	99	347	1.685 ^a _{ir}	10
Ni NP Ni-N-C	147			11
FeP/NCNSs	205			12
B,N:Mo ₂ C@BCN	100	360 (ŋ ₁₀₀)	$1.84^{b}(\eta_{100})_{ir}$	13
NiFe@C	195	214	1.575 ^a _{ir}	14
NiS@C	232			15
MoSe ₂ -NiSe@C	180			16
MoP@C	49			17
Mo ₂ C-MoP NPC/CFP-800	146			18
Co-Mo ₂ C@NCNT	186	337	1.628°	19
Fe-Ni@NC-CNTs	202	274	$1.98^{b}(\eta_{145})_{ir}$	20
FLNPC@MoP-NC/MoP- C/CC	69			21
MoP/NPG	115			22
VC@NCNT	159			23
Y–S Ni–Co-Se/CFP	250	300		24
CoPS@NPS-C	191	320		25
CoNP@C	58			26
S-CoWP@(S,N)-C	67	280	1.65 _{ir}	27
Mo ₂ C@NC	60			28
$NiCo_2O_4(a)C$	109	267	1.608 ^b	29

HER, OER and OWS in 1 M KOH.

^aCatalyst-modified carbon fiber was used as electrode.

^bCatalyst-modified nickel foam was used as electrode.

°Catalyst-modified Ti plate was used as electrode.

ir refers to the ir-corrected cell voltage for overall water splitting.

References in Table S1.

- [1].X. Wu, S. Zhou, Z. Wang, J. Liu, W. Pei, P. Yang, J. Zhao, and J. Qiu, Adv. Energy Mater. 2019, 9, 1901333.
- [2].Y.-N. Hou, Z. Zhao, H. Zhang, C. Zhao, X. Liu, Y. Tang, Z. Gao, X. Wang, J. Qiu, *Carbon* 2019, 144, 492-499.
- [3].C. Wang, H. Yang, Y. Zhang, and Q. Wang, Angew. Chem. Int. Ed. 2019, 58, 6099-6103.
- [4].W. Wan, S. Wei, J. Li, C. A. Triana, Y. Zhou and G. R. Patzke, J. Mater. Chem. A, 2019, 7, 15145-15144.
- [5].Z. Chen, H. Xu, Y. Ha, X. Li, M. Liu and R. Wu, Appl. Catal. B: Environ., 2019, 250, 213-223.
- [6].S. Yang, L. Chen, W. Wei, X. Lv and J. Xie, *Appl. Surf. Sci.*, 2019, 476, 749-756.
- [7].S. Chakrabartty, B. K. Barman and C. Retna Raj, *Chem Commun (Camb)*, 2019, 55, 4399-4402.
- [8].T. Ouyang, Y. Q. Ye, C. Y. Wu, K. Xiao and Z. Q. Liu, Angew. Chem. Int. Ed., 2019, 58, 4923-4928.
- [9].M. Li, Y. Zhu, H. Wang, C. Wang, N. Pinna and X. Lu, Adv. Energy Mater., 2019, 9, 1803185.
- [10]. Q. Liang, H. Jin, Z. Wang, Y. Xiong, S. Yuan, X. Zeng, D. He and S. Mu, *Nano Energy*, 2019, **57**, 746-752.

- [11]. C. Lei, Y. Wang, Y. Hou, P. Liu, J. Yang, T. Zhang, X. Zhuang, M. Chen, B. Yang, L. Lei, C. Yuan, M. Qiu and X. Feng, *Energy Environ. Sci.*, 2019, **12**, 149-156.
- [12]. Y. Yu, Z. Peng, M. Asif, H. Wang, W. Wang, Z. Wu, Z. Wang, X. Qiu,
 H. Tan and H. Liu, ACS Sustain. Chem. Eng., 2018, 6, 11587-11594.
- [13]. M. A. Anjum, M. H. Lee and J. S. Lee, ACS Catal., 2018, 8, 8296-8305.
- [14]. W. Park, I. Kim, I. Oh, J.C. Kim and D.W. Kim, J. Catal., 2018, 366, 266-274.
- [15]. J. Zhang, Y. Wang, J. Cui, J. Wu, X. Shu, C. Yu, H. Bai, M. Zhai, Y. Qin, H. Zheng, Y. Zhu, Y. Zhang and Y. Wu, *Int. J. Hydrogen Energy*, 2018, 43, 16061-16067.
- [16]. C. Liu, K. Wang, X. Zheng, X. Liu, Q. Liang and Z. Chen, *Carbon*, 2018, 139, 1-9.
- [17]. G. Li, Y. Sun, J. Rao, J. Wu, A. Kumar, Q. Xu, C. Fu, E. Liu, G. R. Blake, P.Werner, B. Shao, K. Liu, S. Parkin, X. Liu, M. Fahlman, S.-C. Liou, G. Auffermann, J. Zhang, C. Felser and X. Feng, *Adv. Energy Mater.*, 2018, 8, 1801258.
- [18]. T. Liu, H. Liu, X. Wu, Y. Niu, B. Feng, W. Li, W. Hu and C. Li, *Electrochim. Acta*, 2018, 280, 710-716.
- [19]. L. Ai, J. Su, M. Wang and J. Jiang, ACS Sustain. Chem. Eng., 2018, 6, 9912-9920.

- [20]. X. Zhao, P. Pachfule, S. Li, J. R. Simke, J. Schmidt and A. Thomas, Angew. Chem. Int. Ed., 2018, 57, 8921-8926.
- [21]. B. Liu, H. Li, B. Cao, J. Jiang, R. Gao and J. Zhang, *Adv. Funct. Mater.*, 2018, 28, 1801527.
- [22]. K. Lan, X. Wang, H. Yang, K. Iqbal, Y. Zhu, P. Jiang, Y. Tang, Y. Yang,
 W. Gao, R. Li, *ChemElectroChem*, 2018, 5, 2256-2262.
- [23]. L. Cao, N. Zhang, L. Feng, J. Huang, Y. Feng, W. Li, D. Yang and Q. Liu, *Nanoscale*, 2018, **10**, 14272-14279.
- [24]. K. Ao, J. Dong, C. Fan, D. Wang, Y. Cai, D. Li, F. Huang and Q. Wei, ACS Sustain. Chem. Eng., 2018, 6, 10952-10959.
- [25]. Y. Hu, F. Li, Y. Long, H. Yang, L. Gao, X. Long, H. Hu, N. Xu, J. Jin and J. Ma, J. Mater. Chem. A, 2018, 6, 10433-10440.
- [26]. Q. Jin, B. Ren, D. Li, H. Cui and C. Wang, Nano Energy, 2018, 49, 14-20.
- [27]. Q. Weng, C. R. Grice, W. Meng, L. Guan, F. Xu, Y. Yu, C. Wang, D.Zhao and Y. Yan, ACS Energy Letters, 2018, 3, 1434.
- [28]. J. Chi, W. Gao, W. Lin, B. Dong, J. Qin, Z. Liu, B. Liu, Y. Chai and C. Liu, J. Catal., 2018, 360, 9-19.
- [29]. J. Deng, H. Zhang, Y. Zhang, P. Luo, L. Liu and Y. Wang, J. Power Sources, 2018, 372, 46-53.

Catalyst	Ni wt%	Ru wt%	Fe wt%	Ni/Ru molar
				ratio
e-Ni _{0.26} Ru _{0.74} @C	31.9	45.4	2.7	1.2
<i>e</i> -Ni _{0.4} Ru _{0.6} @C	49.1	31.0	2.0	2.7
<i>e</i> -Ni _{0.6} Ru _{0.4} @C	42.5	20.6	1.6	3.6
Ni _{0.6} Ru _{0.4} @C	63.5	19.8	0	5.6
e-Ni _{0.74} Ru _{0.26} @C	65.9	13.0	4.1	8.7

Table S2. ICP-AES analysis results of *e*-Ni_xRu_y@C, Ni_xRu_y@C catalysts.

Note: ICP analysis revealed that only trace Fe species remained in *e*-Ni_xRu_y@C catalysts after the etching process probably due to the interaction between Fe²⁺ and OA. As the exhedral graphitic carbon shell provides the catalytic sites, the trace endohedral Fe species may provide negligible influence on the electronic state of the graphitic carbon shell¹ and hence is not further considered in the discussions.

Reference

[1].W. Wan, S. Wei, J. Li, C. A. Triana, Y. Zhou and G. R. Patzke, J. Mater. Chem. A, 2019, 7, 15145-15144.

Table S3. Impedance spectra fitting results for the HER of e-Ni_{0.6}Ru_{0.4}@C, Ni_{0.6}Ru_{0.4}@C and Ni@C in 1 M KOH.

Samples	R _S	R _c	CPE1-T	CPE1-P	R _t	CPE2-T	CPE2-P
	(Ω)	(Ω)	$(10^{-3}\mathrm{S.sec^{n}/cm^{2}})$	(S.sec ⁿ /cm ²)	(Ω)	$(10^{-3}\mathrm{S.sec^{n}/cm^{2}})$	(S.sec ⁿ /cm ²)
<i>e</i> -Ni _{0.6} Ru _{0.4} @C	2.1	0.1	11.6	0.83	1.1	10.8	0.86
Ni _{0.6} Ru _{0.4} @C	2.3	0.2	23.4	0.64	3.5	3.8	0.92
Ni@C	1.8	0.9	52.6	0.52	22.3	3.8	0.97

Table	S4.	Summary	of	the	catalytic	performances	of	the	NiRu-based
nanostr	uctur	es for HER,	OE	R and	l OWS in 1	M KOH.			

Catalyst	η_{10} for HER(mV)	η_{10} for OER (mV)	η_{10} for OWS (V)	reference
<i>e</i> -Ni _{0.6} Ru _{0.4} @C	33	250	$1.51/1.62 \ (\eta_{100})^{\rm a}{}_{\rm ir}$	This work
Ni ₂ Ru ₂ SNs	40	230	1.6	1
Ni@Ru HNS		320		2
Ni43Ru57 nanoalloy	41 (H ₂ SO ₄)			3
Ru ₃ Ni ₃ NAs	39	304	1.52	4
Ru/Ni ₃ N–Ni	53	200	1.55 (η ₂₀)	5

References in Table S4

[1].J. Ding, Q. Shao, Y. Feng, X. Huang, Nano Energy, 2018, 47, 1-7.

- [2].Hwang, H.; Kwon, T.; Kim, H. Y.; Park, J.; Oh, A.; Kim, B.; Baik, H.; Joo,S. H.; Lee, K, *Small*, 2018, 14, 1702353.
- [3].Zhang, C.; Liu, Y.; Chang, Y.; Lu, Y.; Zhao, S.; Xu, D.; Dai, Z.; Han, M.;
 Bao, J., ACS Appl Mater Interfaces, 2017, 9, 17326-17336.
- [4].Yang, J.; Shao, Q.; Huang, B.; Sun, M.; Huang, X, *iScience*, 2019, 11, 492-504.
- [5].Liu, Z.; Zha, M.; Wang, Q.; Hu, G.; Feng, L, Chem Commun, 2020, 56, 2352-2355.