Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2020

Fig.Supporting Information

Tailorable Nanoarchitecturing of Bimetallic Nickel-Cobalt Hydrogen

Phosphate via the Self-Weaving of Nanotubes for Efficient Oxygen Evolution

Fig. S1. Enlarged FTIR spectra of (a) NiCo-0.5 glycerate, (b) NiCo-1.0 glycerate, and (c) NiCo-2.0 glycerate with detailed assignments.

Table S1. The molar ratios of Ni, Co, and P for each bimetallic Ni-Co hydrogen phosphate samples based on

ICP measurements

Sample	H ₃ PO ₄ amount	<i>n</i> (Ni/Co)	n (Co/Co)	<i>n</i> (P/Co)
	(µL)			
NiCo-2.0-200HP	200	2	1.02	3.62
NiCo-2.0-300HP	300	2	1.08	4.62
NiCo-2.0-500HP	500	2	1.04	4.78
NiCo-2.0-800HP	800	2	1.06	5.06
NiCo-1.0-200HP	200	1	1.03	3.18
NiCo-1.0-300HP	300	1	1.20	3.81
NiCo-1.0-500HP	500	1	1.24	3.92
NiCo-1.0-800HP	800	1	1.10	5.82
NiCo-0.5-200HP	200	1	2.19	3.24
NiCo-0.5-300HP	300	1	2.71	3.30
NiCo-0.5-500HP	500	1	2.01	3.46
NiCo-0.5-800HP	800	1	2.15	2.96

Fig. S2. SEM images showing the morphological evolutions of NiCo-2.0 glycerate spheres (A-1, A-2) after the solvothermal reactions with 200 μ L (B-1, B-2), 300 μ L (C-1, C-2), 500 μ L (D-1, D-2), and 800 μ L (E-1, E-2) of H₃PO₄ solution in ethanol at 180 °C for 16 h.

Fig. S3. SEM images showing the morphological evolutions of NiCo-1.0 glycerate spheres (A-1, A-2) after the solvothermal reactions with 200 μ L (B-1, B-2), 300 μ L (C-1, C-2), 500 μ L (D-1, D-2), and 800 μ L (E-1, E-2) of H₃PO₄ solution in ethanol at 180 °C for 16 h.

Fig. S4. SEM images showing the morphological evolutions of NiCo-0.5 glycerate spheres (A-1, A-2) after the solvothermal reactions with 200 μ L (B-1, B-2), 300 μ L (C-1, C-2), 500 μ L (D-1, D-2), and 800 μ L (E-1, E-2) of H₃PO₄ solution in ethanol at 180 °C for 16 h.

Fig. S5. Low- and high-magnification SEM images of nickel (a, b) and cobalt (c, d) hydrogen phosphate prepared by solvothermal reactions with 800 μ L of phosphoric acid (H₃PO₄) at 180 °C for 16 h using nickel glycerate and cobalt glycerate, respectively as sacrificial templates.

Fig. S6. TEM images of NiCo-1.0-800HP (a, b), and NiCo-0.5-800HP (c, d)

Fig. S7. (a) Digital photographs of the Ni-Co hydrogen phosphate products obtained with the same procedures used for synthesizing NiCo-2.0-800HP but by increasing the amounts of all reactants by 2 times (*left*: NiCo-2.0-800HP-2x) and 2.5 times (*right*: NiCo-2.0-800HP-2.5x). Low- and high-magnification images of NiCo-2.0-800HP-2x (b, c) and NiCo-2.0-800HP-2.5x (d, e). The Ni/Co ratio was maintained at 2:1 in both cases.

The potential for large-scale preparation was explored by increasing the amounts of reagents (including the NiCo-2.0 glycerate template, H_3PO_4 and ethanol) used in the synthesis of NiCo-2.0-800HP by 2 times and 2.5 times (**Fig. S7a**). When the amount of the NiCo-2.0 glycerate template used during the synthesis of NiCo-2.0-800HP was increased to 60 mg and 75 mg (while also increasing the amounts of H_3PO_4 and ethanol), approximately 28 mg and 47.5 mg of Ni-Co hydrogen phosphate powders were obtained, respectively. This indicates that the yield is around 45-60%, taking into account that some products were lost during washing. Therefore, if we assume the yield is 50%, approximately 200 mg and 2 g of the Ni-Co glycerate template is needed to obtain 100 mg and 1 g of Ni-Co hydrogen phosphate product, respectively. Most importantly, the nanotube-assembled 2D architectures were successfully maintained during the scale-up preparation, as seen in **Fig. S7b-e**.

Fig. S8. (a) Digital photographs of NiCo-2.0-800HP in water before (left) and after sonication (right) and (b) after storing in H_2O for 1 week (without sonication or shaking), highlighting the excellent dispersability of this sample in H_2O .

Fig. S9. High-resolution XPS spectra for Ni 2p (a), Co 2p (b), P 2p (c) and (d) O 1s of NiCo-2.0-800HP.

Table S2. Comparison of the OER activity of the fabricated NiCo-2.0-800HP electrode with transition metal

phosphate-based electrodes reported in the literature

Electrode	Electrolyte	η_{10} (mV)	Tafel slope (mV dec ⁻¹)	Reference
Nanotube-woven Ni-Co	1 0 M KOH	320	84.0	This work
hydrogen phosphate		520	01.0	
sheet-like (NiCo-2 0-800HP)				
Cobalt phosphate nanoarray	0.1 M PBS	450	N/A	1
Graphene foam-supported	0.1 M K KPi	390	68.0	2
cobalt phosphate		550	00.0	
Carbon nanodots-modified	0.1 M KOH	350	59.0	3
cobalt phosphate				
3D CoFePi network	0.1 M KOH	315	33.0	4
Hollow cobalt phosphate	1.0 M KOH	320	85.0	5
spheres				
Co ³⁺ -rich Na _{1.95} CoP ₂ O ₇	0.1 M KOH	390	44.0	6
phosphate				
NaCo(PO ₃) ₃ with partially	1.0 M KOH	340	76.0	7
graphitized carbon				
Cobalt pyrophosphate	1.0 M KOH	359	54.1	8
$(Co_2P_2O_7)$ nanowires				
Cobalt pyrophosphate	1.0 M KOH	371	57.9	8
$(Co_2P_2O_7)$ nanobelts				
Cobalt pyrophosphate	1.0 M KOH	390	81.6	8
$(Co_2P_2O_7)$ nanoleaves				
Cobalt pyrophosphate	1.0 M KOH	424	119	8
$(Co_2P_2O_7)$ nanorhombuses				
Co ₂ P ₂ O ₇ @C nanocrystals	0.1 M KOH	397	70.0	9
CoP ₂ O ₇ nanocrystals	0.1 M KOH	490	86.0	9
Co ₃ (PO ₄) ₂ @N-doped carbon	1.0 M KOH	317	62.0	10
Flower-like Co-Zn phosphate	1.0 M KOH	382	83.2	11
FeCo phosphate nanosheets	1.0 M KOH	267	30.0	12
Co ₃ (PO ₄) ₂ @N-doped carbon	1.0 M KOH	290	82.0	13

Fig. S10. High-resolution XPS spectra for (a) Ni 2p, (b) Co 2p, and (c) O 1s of the NiCo-2.0-800HP electrode after the OER stability test in 1.0 M KOH for 15 h.

Fig. S11. Low- and high-magnification SEM images of NiCo-2.0-800HP after cycling (a, b) and NiCo-1.0-800HP after the OER catalytic reaction (c, d).

SI References

- L. Xie, R. Zhang, L. Cui, D. Liu, S. Hao, Y. Ma, G. Du, A. M. Asiri and X. Sun, *Angew. Chem. Int. Ed.*, 2017, 56, 1064-1068.
- 2. M. Zeng, H. Wang, C. Zhao, J. Wei, W. Wang and X. Bai, *Sci. Bull.*, 2015, 60, 1426-1433.
- 3. S. Zhao, C. Li, H. Huang, Y. Liu and Z. Kang, J. Materiomics, 2015, 1, 236-244.
- 4. Y. Zhou and H. C. Zeng, *Small*, 2018, **14**, 1704403.
- L. Chen, J.-T. Ren, Y.-S. Wang, W.-W. Tian, L.-J. Gao and Z.-Y. Yuan, ACS Sustain. Chem. Eng., 2019, 7, 13559-13568.
- L. Gui, X. Miao, C. Lei, K. Wang, W. Zhou, B. He, Q. Wang and L. Zhao, *Chem.-Euro J.*, 2019, 25, 11007-11014.
- R. Gond, D. K. Singh, M. Eswaramoorthy and P. Barpanda, *Angew. Chem. Int. Ed.*, 2019, 58, 8330-8335.
- H. Du, W. Ai, Z. L. Zhao, Y. Chen, X. Xu, C. Zou, L. Wu, L. Su, K. Nan, T. Yu and C. M. Li, *Small*, 2018, 14, 1801068.
- Y. Chang, N.-E. Shi, S. Zhao, D. Xu, C. Liu, Y.-J. Tang, Z. Dai, Y.-Q. Lan, M. Han and J. Bao, ACS Appl. Mater. Interfaces, 2016, 8, 22534-22544.
- C.-Z. Yuan, Y.-F. Jiang, Z. Wang, X. Xie, Z.-K. Yang, A. B. Yousaf and A.-W. Xu, *J. Mater. Chem. A*, 2016, 4, 8155-8160.
- 11. L. Qian and Y. Miao, *Polyhedron*, 2019, **160**, 213-218.
- 12. D. Yin, Z. Jin, M. Liu, T. Gao, H. Yuan and D. Xiao, *Electrochem. Acta*, 2018, 260, 420-429.
- 13. P. Feng, X. Cheng, J. Li and X. Luo, *Catal. Lett.*, 2018, **148**, 214-219.