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Fig.Supporting Information

Tailorable Nanoarchitecturing of Bimetallic Nickel-Cobalt Hydrogen 

Phosphate via the Self-Weaving of Nanotubes for Efficient Oxygen Evolution

Fig. S1. Enlarged FTIR spectra of (a) NiCo-0.5 glycerate, (b) NiCo-1.0 glycerate, and (c) NiCo-2.0 glycerate 

with detailed assignments.
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Table S1. The molar ratios of Ni, Co, and P for each bimetallic Ni-Co hydrogen phosphate samples based on 

ICP measurements

Sample H3PO4 amount 
(μL)

n (Ni/Co) n (Co/Co) n (P/Co)

NiCo-2.0-200HP 200 2 1.02 3.62
NiCo-2.0-300HP 300 2 1.08 4.62
NiCo-2.0-500HP 500 2 1.04 4.78
NiCo-2.0-800HP 800 2 1.06 5.06
NiCo-1.0-200HP 200 1 1.03 3.18
NiCo-1.0-300HP 300 1 1.20 3.81
NiCo-1.0-500HP 500 1 1.24 3.92
NiCo-1.0-800HP 800 1 1.10 5.82
NiCo-0.5-200HP 200 1 2.19 3.24
NiCo-0.5-300HP 300 1 2.71 3.30
NiCo-0.5-500HP 500 1 2.01 3.46
NiCo-0.5-800HP 800 1 2.15 2.96
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Fig. S2. SEM images showing the morphological evolutions of NiCo-2.0 glycerate spheres (A-1, A-2) after 

the solvothermal reactions with 200 μL (B-1, B-2), 300 μL (C-1, C-2), 500 μL (D-1, D-2), and 800 μL (E-1, 

E-2) of H3PO4 solution in ethanol at 180 °C for 16 h. 
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Fig. S3. SEM images showing the morphological evolutions of NiCo-1.0 glycerate spheres (A-1, A-2) after 

the solvothermal reactions with 200 μL (B-1, B-2), 300 μL (C-1, C-2), 500 μL (D-1, D-2), and 800 μL (E-1, 

E-2) of H3PO4 solution in ethanol at 180 °C for 16 h. 
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Fig. S4. SEM images showing the morphological evolutions of NiCo-0.5 glycerate spheres (A-1, A-2) after 

the solvothermal reactions with 200 μL (B-1, B-2), 300 μL (C-1, C-2), 500 μL (D-1, D-2), and 800 μL (E-1, 

E-2) of H3PO4 solution in ethanol at 180 °C for 16 h. 
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Fig. S5. Low- and high-magnification SEM images of nickel (a, b) and cobalt (c, d) hydrogen phosphate 

prepared by solvothermal reactions with 800 μL of phosphoric acid (H3PO4) at 180 °C for 16 h using nickel 

glycerate and cobalt glycerate, respectively as sacrificial templates.
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Fig. S6. TEM images of NiCo-1.0-800HP (a, b), and NiCo-0.5-800HP (c, d)
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Fig. S7. (a) Digital photographs of the Ni-Co hydrogen phosphate products obtained with the same procedures 

used for synthesizing NiCo-2.0-800HP but by increasing the amounts of all reactants by 2 times (left: NiCo-

2.0-800HP-2x) and 2.5 times (right: NiCo-2.0-800HP-2.5x). Low- and high-magnification images of NiCo-

2.0-800HP-2x (b, c) and NiCo-2.0-800HP-2.5x (d, e). The Ni/Co ratio was maintained at 2:1 in both cases.

The potential for large-scale preparation was explored by increasing the amounts of reagents (including the 

NiCo-2.0 glycerate template, H3PO4 and ethanol) used in the synthesis of NiCo-2.0-800HP by 2 times and 2.5 

times (Fig. S7a). When the amount of the NiCo-2.0 glycerate template used during the synthesis of NiCo-2.0-

800HP was increased to 60 mg and 75 mg (while also increasing the amounts of H3PO4 and ethanol), 

approximately 28 mg and 47.5 mg of Ni-Co hydrogen phosphate powders were obtained, respectively. This 

indicates that the yield is around 45-60%, taking into account that some products were lost during washing. 

Therefore, if we assume the yield is 50%, approximately 200 mg and 2 g of the Ni-Co glycerate template is 

needed to obtain 100 mg and 1 g of Ni-Co hydrogen phosphate product, respectively. Most importantly, the 

nanotube-assembled 2D architectures were successfully maintained during the scale-up preparation, as seen 

in Fig. S7b-e.
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Fig. S8. (a) Digital photographs of NiCo-2.0-800HP in water before (left) and after sonication (right) and (b) 

after storing in H2O for 1 week (without sonication or shaking), highlighting the excellent dispersability of 

this sample in H2O.



S10

Fig. S9. High-resolution XPS spectra for Ni 2p (a), Co 2p (b), P 2p (c) and (d) O 1s of NiCo-2.0-800HP.
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Table S2. Comparison of the OER activity of the fabricated NiCo-2.0-800HP electrode with transition metal 

phosphate-based electrodes reported in the literature

Electrode Electrolyte η10

 (mV)
Tafel slope
(mV dec-1)

Reference

Nanotube-woven Ni-Co 
hydrogen phosphate 

sheet-like (NiCo-2.0-800HP)

1.0 M KOH 320 84.0 This work

Cobalt phosphate nanoarray 0.1 M PBS 450 N/A 1

Graphene foam-supported 
cobalt phosphate

0.1 M K KPi 390 68.0 2

Carbon nanodots-modified 
cobalt phosphate

0.1 M KOH 350 59.0 3

3D CoFePi network 0.1 M KOH 315 33.0 4

Hollow cobalt phosphate 
spheres

1.0 M KOH 320 85.0 5

Co3+‐rich Na1.95CoP2O7 
phosphate

0.1 M KOH 390 44.0 6

NaCo(PO3)3 with partially 
graphitized carbon

1.0 M KOH 340 76.0 7

Cobalt pyrophosphate 
(Co2P2O7) nanowires

1.0 M KOH 359 54.1 8

Cobalt pyrophosphate 
(Co2P2O7) nanobelts

1.0 M KOH 371 57.9 8

Cobalt pyrophosphate 
(Co2P2O7) nanoleaves

1.0 M KOH 390 81.6 8

Cobalt pyrophosphate 
(Co2P2O7) nanorhombuses

1.0 M KOH 424 119 8

Co2P2O7@C nanocrystals 0.1 M KOH 397 70.0 9

CoP2O7 nanocrystals 0.1 M KOH 490 86.0 9

Co3(PO4)2@N-doped carbon 1.0 M KOH 317 62.0 10

Flower-like Co-Zn phosphate 1.0 M KOH 382 83.2 11

FeCo phosphate nanosheets 1.0 M KOH 267 30.0 12

Co3(PO4)2@N-doped carbon 1.0 M KOH 290 82.0 13
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Fig. S10. High-resolution XPS spectra for (a) Ni 2p, (b) Co 2p, and (c) O 1s of the NiCo-2.0-800HP electrode 

after the OER stability test in 1.0 M KOH for 15 h.
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Fig. S11. Low- and high-magnification SEM images of NiCo-2.0-800HP after cycling (a, b) and NiCo-1.0-

800HP after the OER catalytic reaction (c, d).
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