Supplementary information for

Dynamic Evolution of Hydroxylated Layer in Ruthenium Phosphide Electrocatalysts for Alkaline Hydrogen Evolution Reaction

Jae-Chan Kim,^a Chan Woo Lee *^b and Dong-Wan Kim *^a

^a School of Civil, Environmental and Architectural Engineering, Korea University, Seoul 02841, Republic of Korea.

^b Department of Chemistry, Kookmin University, 77, Jeongneung-ro, Seongbuk-gu, Seoul 02707, Republic of Korea.

Figure S1. Low-magnification SEM images of (a) RuO₂, (b) Ru_xP-2, and (c)Ru_xP-3 NFs.

Figure S2. TEM images of (a, b) Ru_xP-2 NFs and (c, d) $Ru_xP-3NFs$ obtained at different magnifications. Both of Ru_xP-2 and Ru_xP-3 NFs included void space as white arrow in Figure S2b and d.

Figure S3. STEM-EDS mapping result and EDS spectrum measured using a bundle of (a,b) Ru_xP-1, (c,d) Ru_xP-2, and (e,f) Ru_xP-3 NFs for analyzing the bulk composition.

Figure S4. HRTEM images of (a,b) Ru_xP-1, (c,d) Ru_xP-2, and (e,f) Ru_xP-3.

Figure S5. XPS survey spectra of Ru_xP-1, Ru_xP-2, and Ru_xP-3 NFs.

Figure S6. The linear sweep voltammetry curves of Ru_xP-1 in (a) 0.5 M H₂SO₄ and (b) 1.0 M KOH electrolytes. Polarization curves of Ru_xP-1 were measured after the 1,000th, 5,000th, and 10,000th cyclic voltammetry between 0.05 V and -0.14 V.

Table S1. The bulk composition of Ru_xP-1 , Ru_xP-2 , and Ru_xP-3 NFs were measured by the EDS spectrum.

EDS	Ru_xP-1 [at.%]	Ru_xP-2 [at.%]	Ru_xP-3 [at.%]
Ru	47.2	45.2	34.2
Р	24.0	34.5	35.2
0	28.8	20.3	30.6
Ru/P	1.97	1.31	0.97

		0.5 M H	0.5 M H ₂ SO ₄		ЭН		
Catalysts	Morphology	$\eta_{10}^{[a]}$ [mV]	Tefel slope [mV dec ⁻¹]	η ₁₀ [mV]	Tefel slope [mV dec ⁻¹]	Areal loading mass [mg cm ⁻²]	Reference
Ru _x P-1	Nanofibers	35	47	9	38		
Ru _x P-2	Nanofibers	27	45	13	43	2	This study
Ru _x P-3	Nanofibers	42	69	41	79		-
Ru-Ru ₂ P	Nanoparticles	66	41	64	36.7		
Ru	Nanoparticles	78	56	72	40.1	0.38	10
Ru ₂ P	Nanoparticles	55	34.1	54	29.3		
Ru ₂ P/RGO	Nanoparticles	22	29	13	40	1	10
Ru ₂ P	Nanoparticles	117	30	32	62	- 1	12
RuP ₂ @NPC	Nanoparticles	38	38	52	69	1	0
RuP ₂ NPs	Nanoparticles	129	109	90	73	- 1	9
RuP-475	Nanoparticles	47	39	47	45	0.245	27
RuP ₂ -550	Nanoparticles	122	83	76	74	- 0.345	
L-RuP/C	Nanoparticles (32 nm)	19	37	18	34	2	7
S-RuP/C	Nanoparticles (3 nm)	-	-	17	35	- 2	/
RuP/CC	Nanoparticles	13	22	-	-	2.2.4.2	
RuP ₂ /CC	Nanoparticles	33	56	-	-	5.5~4.2	11
RuP _x /NPC	Nanoparticles	55	59	74	70	0.12	8
Ru ₂ P/Graphene	Nanoparticles	18	32	-	-		
RuP/Graphene	Nanoparticles	24	41	-	-	1	28
RuP ₂ /Graphene	Nanoparticles	49	71	-	-		
Ru ₂ P-BM-C	Nanoparticles	-	-	36	59	0.34	29
Ru ₂ P	Nanocrystals	≈ 120	101	57	43	- 0.06	20
RuP	Nanocrystals	≈ 100	76	74	49	- 0.00 30	
Ru-Ru ₂ P@NPC	Nanoparticles	42	39.75	46	39.75	0.357	31
Ru ₂ P/PC-2	Nanoparticles	-	51	43.4	35.1	0.285	16
Pt/C	Nanoparticles	30	50	30	40	2	32

Table S2. Comparison of HER performance in acid and alkaline media for Ru_xP NFs with

previously reported ruthenium phosphide-based electrocatalysts.

^[a] Overpotential for hydrogen evolution reaction at the current density of 10 mA cm⁻²

Figure S7. Electrochemical double-layer capacitance measurements (C_{dl}) of Ru_xP-1, Ru_xP-2, Ru_xP-3, and RuO₂ NFs to compare electrochemically active surface area (ECSA) in (a) 0.5 M H_2SO_4 and (b) 1.0 M KOH electrolyte. (c) The specific capacitance for flat carbon surface (C_s) was measured in a potential range of 0.5 ~ 0.7 V vs. RHE. ECSA-normalized polarization curves of Ru_xP-1, Ru_xP-2, Ru_xP-3, and RuO₂ NFs, which were measured in (d) 0.5 M H_2SO_4 and (e) 1.0 M KOH electrolyte. The ECSA was calculated using the specific capacitance of flat carbon surface and the values were presented in Table.

Figure S8. Electrochemical impedance spectroscopy conducted for analyzing resistance for Ru_xP-1 , Ru_xP-2 , and Ru_xP-3 NFs electrocatalysts at 0.000 V and -0.075 V in 1.0M KOH electrolyte.

Figure S9. The normalized Ru 3p core level spectra of as-prepared Ru_xP-1 NFs (black circle) and Ru_xP-1 NFs after 1000 cycles of LSV in 0.5M H_2SO_4 (red circle) and 1M KOH (blue circle).

	Ru _x P-1 [at.%]		Ru _x P-2 [at.%]		Ru _x P-3 [at.%]		
	As-prepared	After HER	As-prepared	After HER	As-prepared	After HER	
Ru	30.8	13.1	24.1	25.1	15.7	19.1	
Р	17.8	1.8	20	4.7	21.1	4.9	
Ru/P	1.73	7.28	1.2	5.34	0.74	3.9	

Table S3. XPS analysis conducted using Ru_xP-1 , Ru_xP-2 , and Ru_xP-3 NFs electrocatalysts for analyzing XPS composition change before and after HER test.

Figure S10. (a) The OER polarization curves and (b) Tafel slopes of Ru_xP-1 , Ru_xP-2 , and RuO_2 NFs NFs as electrocatalysts. Polarization curves for OER measured in 1.0 M KOH electrolyte.