Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2020

Fig. S1. HRTEM image of CoOx/CNTs electrocatalyst.

Fig. S2. XPS element contents of CoOx/FeOx/CNTs.

	OER		
Electrocatalyst	$(\eta (mV) at$	Tafel (mV dec_1)	Reference
	j=10 mA cm ⁻²)		
Fe/Co-N/S-Cs	285	/	29
Fe-Co-S/N-C	329	63.2	30
Co ₃ O ₄ /Fe ₂ O ₃ NC	310	67	31
NiCo/PFC	400	106	32
CoOx / Fe ₂ O ₃ /CC	316	56	11
$Co_3Fe_{1.5}$ -O	284	60	33
$Fe_{0.4}Co_{0.6}$	383	/	34
Fe ₁ Co ₂ -P/C	362	50.1	35
Co ₃ O ₄ /NPGC	450	/	36
Co-N-CNTs	460	/	37
SS-Fe-0.5	440	68	38
CoOx/FeOx/CNTs	308	43	This work

Table S1. Comparison of the electrocatalytic performance of CoOx/FeOx/CNTs with various

reported non-precious electrocatalysts in alkaline media.

Fig. S3. (a and b) TEM images of the CoOx/FeOx/CNTs electrocatalyst after electrochemical test; (c) HRTEM image; (d) TEM-mapping of elements.

Fig. S4. (a) Raman spectrum and (b) Co 2p; (c) Fe 2p; and (d) O 1s XPS spectra of CoOx/FeOx/CNTs after test.

Computational Methods

First-principles calculations were performed using Vienna Ab-Initio Simulation Package.^{1,2} Exchange-correlation energy was described using the spin-polarized Perdew-Burke-Ernzerhof functional with a energy cutoff of 500 eV. Van der Waals correction was adopted using the Grimme scheme (D2).³⁻⁵ Due to the strong electronic correlations in the localized 3d orbitals of Co and Fe ions, an on-site Coulomb interaction respectively with an effective parameter of U - J = 3.3 and 4.0 eV was applied.⁶ The lattice constants of bulk Co_3O_4 and Fe_3O_4 (space group FD-3M) in were calculated to be 8.09 and 8.28 Å, respectively, in good agreement with previous studies.^{7,8} The Co₃O₄/Fe₃O₄ interface was built by matching an eight-layer slab of $Co_3O_4(110)$ to an eight-layer slab of $Fe_3O_4(311)$ (see Figure S1) according to the experimental observations. The average value of their constants was adopted and kept fixed in the hybrid system, resulting in 1.15% lattice mismatch. The Co₃O₄ surface was modeled by the most energetically favorable Co₃O₄(110).^{9,10} Specifically, Co₄O₄terminated plane was selected because it was found to be more stable for $Co_3O_4(110)$ surface.¹¹ A eight-layer slab with a vacuum spacing of at least 20 Å was used. The upper four layers including the adsorbates were optimized until the residual forces are less than 0.01 eV/Å. A dipole correction¹² was applied due to the asymmetric layer arrangement.

References:

- 1. Kresse, G.; Furthmüller, J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169-11186.
- 2. Kresse, G.; Joubert, D., From ultrasoft pseudopotentials to the projector augmentedwave method. Phys. Rev. B 1999, 59, 1758-1775.
- Perdew, J. P.; Burke, K.; Ernzerhof, M., Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865-3868.
- 4. Grimme, S., Semiempirical GGA-Type Density Functional Constructed with a Long-Range Dispersion Correction. J. Comput. Chem. 2006, 27, 1787-1799.

- Barone, V.; Casarin, M.; Forrer, D.; Pavone, M.; Sambi, M.; Vittadini, A., Role and Effective Treatment of Dispersive Forces in Materials: Polyethylene and Graphite Crystals as Test cases. J. Comput. Chem. 2009, 30, 934-939.
- 6. L. Wang, T. Maxisch and G. Ceder, Phys. Rev. B, 2006, 73, 195107–195112.
- 7. P. Broqvist, I. Panas, H. Persson, J. Catal., 2002, 210, 198.
- 8. Friak, M.; Schindlmayr, A.; Scheffler, M. New J. Phys. 2007, 9, 5.
- 9. X. Xie, Y. Li, Z.-Q. Liu, M. Haruta, W. Shen, Nature. 2009, 458, 746.
- C. Y. Ma, Z. Mu, J. J. Li, Y. G. Jin, J. Cheng, G. Q. Lu, Z. P. Hao, S. Z. Qiao, J. Am. Chem. Soc., 2010, 132, 2608.
- 11. J. Chen, A. Selloni, Phys. Rev. B, 2012, 85, 085306.

Table S2. Thermodynamic data of molecular species. For liquid H₂O, the entropy was calculated at p = 0.035 atm through $TS = TS^0 + k_B T \ln (p^0/p)$ because gas-phase H₂O is in equilibrium with

Molecule	Total energy (eV)	ZEP (eV)	TS (eV)
$H_2(g)$	-6.77	0.34	0.40
$H_2O(l)$	-14.22	0.58	0.67

liquid water at 298.15 K under this pressure.

Fig. S5. (a) Top (upper panel) and side view (lower panel) of Co₃O₄(110) surface. Blue and red balls represent Co,
Fe and O atoms, respectively. (b) Top (upper panel) and side view (lower panel) of Fe₃O₄ (311) surface. Green and red balls represent Co, and O atoms, respectively. (c) Side-view of the model structure of Co₃O₄/Fe₃O₄ hybrid system. Blue, green and red balls represent Co, Fe and O atoms, respectively.

Fig. S6. The density of states (DOS) of Co_3O_4 and Co_3O_4 /Fe₃O₄.