Large-area, Green Solvent Spray Deposited Nickel Oxide Films for

Scalable Fabrication of Triple-Cation Perovskite Solar Cells

Neetesh Kumar¹, Hock Beng Lee¹, Sunbin Hwang² and Jae-Wook Kang¹*

¹Department of Flexible and Printable Electronics, LANL-CBNU Engineering Institute-Korea,

Chonbuk National University, Jeonju 54896, Republic of Korea.

²Functional Composite Materials Research Center, Institute of Advanced Composite Materials,

Korea Institute of Science and Technology, Wanju-gun 55324, Republic of Korea

*Corresponding author: Prof. Jae-Wook Kang

E-mail: jwkang@jbnu.ac.kr

Fig. S1. Low and high magnification FE-SEM images of spray deposited NiO films on ITO substrates showing the change in surface morphology with spray cycles. (a_1, a_2) 4 spray cycles, (b_1, b_2) 6-spray cycles, (c_1, c_2) 8-spray cycles, and (d_1, d_2) 10-spray cycles.

Fig. S2. Cross-sectional FE-SEM images of (a) NiO-4, (b) NiO-6, (c) NiO-8 and (d) NiO-10 films deposited on ITO substrates.

Fig. S3. (a) Representative wide-scan XPS survey spectrum and (b) high resolution scan spectra of the Ni 2p3/2 peak of NiO thin film.

UPS Analysis

The energy levels of NiO were examined via UPS analysis. The energy difference (E_i) between the valence band maximum (E_{VB}) and E_F is derived from the low binding energy tails. The work function, or Fermi level (E_F) of the charge carrier extraction layers are obtained by subtracting the binding energies of the secondary electron cutoffs from the excitation energy (21.22 eV) of He^I UPS spectra. The position of the valence band was confirmed using the equation $E_{VB} =$ 21.22–($E_{cutoff} - E_i$). Based on the tails at low binding energy, the energy difference (E_i) between Fermi level (E_F) and the valence band maximum (E_{vb}) is about ~0.36 eV, and the work function or Fermi level was approximately -4.52 eV. This was determined by subtracting the $E_{cut-off}$ (16.7 eV) from the excitation energy (21.22 eV) of He^I. The position of the valence band (VB) energy level was an energy of -4.88 eV. After determining the E_{VB} , the conduction band (E_{CB}) energy level can be obtained easily by adding the optical bad gap (~3.70 eV) to the E_{VB} (~4.88 eV). Therefore, the E_{CB} of the NiO film was approximately -1.18 eV.

Fig. S4. (a) Low-magnification FESEM images of perovskite films deposited on the top NiO-8 HTL and (b) absorbance spectra with HTL and HTL-ETL layers.

TRPL analysis:

The TRPL decay parameters were obtained by fitting the decay profile data using the biexponential function as:

$$Y(t) = A_1 \exp\left(-\frac{t - t_0}{t_1}\right) + A_1\left(-\frac{t - t_0}{t_2}\right) + Y_0$$
(1)

Here, τ_1 and τ_2 are the first and second order decay times, and A_1 and A_2 are the respective weight factors of each decay channel. The fast-decay time (τ_1) indicates the non-radiative decay, and the slow-decay (τ_2) indicates the radiative decay, which originated from the recombination of charge carriers and free-charge carriers before the collection, respectively. The average recombination lifetime $\langle \tau_{avg} \rangle$ was calculated from the following equation:

$$<\tau_{Avg}>=rac{A_{1} au_{1}^{2}+A_{1} au_{2}^{2}}{A_{1} au_{1}+A_{2} au_{2}}$$
 (2)

Table S1. TRPL lifetime measurements of perovskite absorber deposited on an ITO/NiOx-8

 coated substrate. Weight fraction calculated from the amplitude at a particular lifetime decay.

Sample	τ_1 τ_2		A ₁	A ₂	<\mathcal{t}>	
	(ns)	(ns)			(ns)	
ITO/pero.	2.058	15.891	0.2138	0.3467	14.85	
ITO/NiO/pero.	1.271	10.540	0.2454	0.3113	9.73	
ITO/NiO/Pero./PCBM/ZnO	1.232	9.0310	0.3411	0.2684	7.87	

Table S2. Summary of device parameters V_{OC} , J_{SC} , FF, and PCE of the inverted PSCs using undoped spray deposited NiO or NiO_x HTLs with device configurations and antisolvents used for depositing the perovskite layer.

HTL	Method (solvent)	Anti- Solvent (vol.)	Perovskite System	V _{oc} (V)	J _{sc} (mA cm ⁻¹)	FF (%)	PCE (%)	Ref.
NiO	Spray ^a	Toluene (800 μL)	FTO/NiO/MAPbI ₃ /PCBM/TiO _x /Ag	1.03	18.70	64.0	12.4	[1]
NiO	Spray ^a	Toluene (800 μL)	FTO/NiO/MAPbI ₃ /PCBM/BCP/Ag	1.09	20.26	74.8	16.6	[2]
NiO	Spray ^a	Toluene (800 μL)	FTO/NiO-Al ₂ O ₃ /MAPbI ₃ /PCBM/BCP/Ag	1.04	18.0	72.0	13.5	[3]
NiO	Spray Combustion ^b	Methylbenzen e (1000 μL)	FTO/NiO/MAPbI ₃ /PCBM//Ag	1.03	17.42	71.2	12.7	[4]
NiO	Ultrasonic Spray ^c	N ₂ gas assisted conversion	ITO/NiO/ Cs _{.17} FA _{.83} Pb(Br _{.17} I _{.83}) ₃ ./C ₆₀ /BCP/Ag (Cs- containing Double cation)	1.02	19.7	76.0	16.2	[5]
NiO	Spray ^d	EA-Hex (100 μL)	ITO/NiO/(FAPbI ₃) _{0.85} (MAPbBr ₃) _{0.15} /PCB M/ZnO/Ag (Cs-containing Tripe cation)	1.10	22.6	73.0	17.3	This work

Where, ^a acetonitrile + ethanol (95:5 v%), ^b ethanol + acetylacetone, ^c deionized water, ^d ethanol + DI water (80:20 v%).

Fig. S5. Transmittance spectra of A1-A5 and B1-B5 samples deposited for 8 spray cycles

Device	J _{sc}	Voc	FF	PCE	R _s	R _{sh}
	mA cm ⁻²	(V)	(%)	(%)	(Ω)	(Ω)
1	22.60	1.04	71.1	17.00	49.0	30515
2	21.94	1.06	70.96	16.66	50.3	23846
3	21.62	1.06	70.83	16.36	50.3	24606
4	21.81	1.06	70.97	16.51	49.3	23730
5	21.99	1.05	72.23	16.66	52.7	34080
6	22.92	1.06	70.27	17.23	49.9	26683
7	22.75	1.06	71.16	17.14	45.6	25493
8	22.56	1.06	71.58	17.06	45.6	26075
9	21.85	1.05	72.07	16.57	55.2	33276

Table S3. Performance of perovskite devices fabricated on spray deposited large-area NiO-8 (62.5 cm²) films (total 10 samples in two rows). The PSC devices are designated as 1 to 10.

Fig. S6. Box plot of device parameters for samples A1-A5 and B1-B5.

Table 54. Performance of perovskite solar cells with variations in the active areas of the devi	erovskite solar cells with variations in the active areas of the device
--	---

Aperture Area (cm ²)	J _{sc} (mA cm ⁻²)	V _{oc} (V)	FF (%)	PCE (%)	R_s (Ω cm ²)	$ m R_{sh}$ ($\Omega~ m cm^2$)
0.07	22.75	1.06	71.16	17.14	3.2	1284.5
0.09	22.56	1.05	71.58	16.96	3.3	1780.4
0.52	22.76	1.07	56.90	13.93	11.32	751.7
1.04	22.51	1.06	51.23	12.22	14.56	443.1

HTL	Synthes	Device structure	Voc	J _{SC}	FF	PCE	Stability	Stored	Ref.
	is		(V)	(mA/cm ²)		(%)	-	environment	
	method								
Cu:NiO _r	Sol-gel	ITO/Cu:NiO _y /MAPbI ₃ /PC ₆₁ BM/bis-C ₆₀ /Ag	1.11	19.01	0.73	15.40	90% for 240 h	air	6
Cu:NiO _x	NP ink	ITO/Cu:NiO _x /MAPbI ₃ /C ₆₀ /BCP/Ag	1.12	22.28	0.81	20.26	95% for 1000 h	50–65% humidity	7
Cu:NiO _x	DCMS	FTO/Cu:NiO ₃ /MAPbI ₃ /PCBM/Ag	1.06	20.79	0.67	14.88	>90% for 10 days	30 °C, 60% humidity	8
NiO	DCMS	FTO/NiO _x /MAPbI ₃ /PCBM/Ag	0.99	18.76	0.57	10.54	>90% for 10 days	30 °C, 60% humidity	8
Cu:NiO _x	Sol-gel	FTO/bl-Cu:NiO _x /mpCu:NiO _x /MAPbI ₃ / PCBM /bis-C ₆₀ /Ag	1.11	21.58	0.82	19.62	>90% for 1000 h	light	9
NiO	Sol-gel	FTO/bl-NiO _x /MAPbI ₃ /PCBM/bis-C ₆₀ /Ag	1.10	18.49	0.77	15.60	>90% for 1000 h	>90% for 1000 h	10
$Ag:NiO_x$	Sol-gel	ITO/Ag:NiO _x /MAPbI ₃ /PC ₇₁ BM/BCP/Ag	1.08	19.70	0.80	16.86	60% for 30 days	~30% humidity	10
NiO _x	Sol-gel	ITO/NiOx/MAPbI ₃ /PC ₇₁ BM/BCP/Ag	1.05	17.52	0.72	13.24	60% for 30 days	~30% humidity	10
Co:NiO _x	MS	FTO/Co:NiO _x /MAPbI ₃ /PCBM/Ag	1.01	20.02	0.63	12.63	>90% for 10 days	30 °C, 60% humidity	11
NiO _x	MS	FTO/NiO _x /MAPbI ₃ /PCBM/Ag	1.01	18.80	0.55	9.60	>90% for 10 days	30 °C, 60% humidity	11
$Zn:NiO_x$	Sol-gel	FTO/Zn:NiO _x /MAPbI ₃ /PCBM/BCP/Ag	1.10	22.80	0.78	19.6	84.4% for 30 days	Dry air	12
Li:NiO _x	Sol-gel	ITO/Li:NiO _x /MAPbI ₃ /PCBM/Ag	1.00	20.89	0.74	15.41	84.4% for 480 h	Glove box	13
Li:NiO _x	Sol-gel	FTO/LiNiO/MAPbI _{3-x} Cl _x /PCBM/Ag	1.12	21.79	0.74	18.00	~100% for 2 h	1 sun illumination	14
NiMgO	MS	FTO/NiMgO/MAPbI ₃ /PCBM/ZnMgO/Al	1.08	21.30	0.80	18.50	~90% for 600 h	50–70% humidity	15
Sr:NiO _x	Sol-gel	FTO/Sr:NiO _x /MAPbI ₃ /PCBM/AgAl	1.11	22.73	0.79	20.05	>60% for 100 days	18% humidity	16
NiO	Sol-gel	FTO/Sr:NiO _x /MAPbI ₃ /PCBM/AgAl	1.05	20.99	0.69	15.22	~32% for 100 days	18% humidity	16
Cs:NiO _x	Sol-gel	FTO/Cs:NiO _{x/} MAPbI ₃ /PCBM/ZrAcac/Ag	1.12	21.77	0.79	19.35	~90% for 80 days	Argon glovebox	17
Li, Ag:NiO _x	Sol-gel	ITO/Li, Ag:NiO _x /MAPbI ₃ /PCBM/BCP/Ag	1.13	21.29	0.80	19.24	95% for 30 days	$30 \pm 2\%$ humidity	18
NiO	Sol-gel	ITO/NiO _x /MAPbI ₃ /PCBM/BCP/Ag	1.08	19.20	0.78	16.19	85% for 30 days	$30 \pm 2\%$ humidity	18
La:NiO _x	Sol-gel	FTO/La:NiO _x /MAPbI ₃ /PCBM/BCP/Ag	1.01	21.02	0.73	15.46	95% for 30 days	Moisture-free	19
NiO _x	ALD	FTO/ALDNiO _x /Cs _{0.05} MA _{0.95} PbI ₃ /PCBM/ BCP/ALD-AZO/Ag	1.02	20.53	0.73	16.27	95% after 500 h	20-60% humidity, 1 sun	20
E-NiOx	NP ink	ITO/NiO _x /MAPbI ₃ /PCBM/ Ti(Nb)O _x /Ag	1.07	21.88	0.79	18.49	90% after 500 h	85 °C, 85% RH	21
NiOx	NP ink	FTO/NiO _x /MAPbI ₃ /PCBM/Ag	1.09	18.07	0.69	14.42	80% after 150 h	45-56 RH%	22
Li, Mg;NiO _x	Spray	FTO/NiMgLiO/MAPbI ₃ /PCBM/TiNbO/Ag	1.08	20.41	0.83	18.30	>90% for 1000 h	1 Sun light soaking	1
Li, Mg; NiO_x	Spray	FTO/NiMgLiO/Cs0.05FA0.15MA0.8PbI3/PCBM/BCP/Ag	1.08	22.55	0.79	19.17	~100% for 30 days	Dark, 55% humidity	23
Li, Mg; NiO _x	Spray	FTO/NiMgLiO/MAPbI ₃ /PCBM/BCP/Ag	1.08	21.75	0.75	17.60	30% for 15 days	Dark, 55% humidity	23
Li, Mg; Ni O_x	Spray	FTO/ NiMgLiO/MAPbI ₃ /Ti(Nb)O _x /Ag	1.19	22.78	0.77	19.19	80% after 500 h	<25% humidity, 85°C	24
Li, Mg; Ni O_x	Spray	FTO/ NiMgLiO/FA _{0.85} MA _{0.15} Pb(I _{0.85} Br _{0.85}) ₃ /Ti(Nb)O _x /Ag	1.08	21.98	0.79	18.75	90% after 1000 h	1 sun light soaking	25
Li, Mg; NiO_x	Spray	FTO/NiO _x /FAPbI ₃ /PCBM/TiO _x /Ag	1.10	23.09	0.81	20.65	80% after 500h	85 °C	26
NiO	Spray	ITO/NiO/Cs ₁₇ FA ₈₃ Pb(Br ₁₇ I ₈₃) ₃ /C ₆₀ /BCP/Ag	1.02	19.7	0.76	16.2	~90% after 4000 h	N2 atmosphere	5
NiO	Spray	ITO/NiO/Cs4(MA0.17FA0.83)96Pb(I0.83Br0.17)3/PCBM/ZnO/Ag	1.06	22.9	0.72	17.3	>87% after 4500 h	N2 atmosphere	This
mo	Spray	ITO/NiO/Cs4(MA0.17FA0.83)96Pb(I0.83Br0.17)3/PCBM/ZnO/Au	1.06	22.9	0.72	17.3	>82% after 200 h	85 °C; 85% RH	work

 Table S5. Summary of the synthesis method of the NiOx based (pristine and doped) HTL, PSC device structure, performance and device stability under different conditions for the inverted PSCs.

Note- DCMS- DC magnetron sputtering, ALD- Atomic layer deposition, MS- magnetron sputtering.

References:

- W. Chen, Y. Wu, Y. Yue, J. Liu, W. Zhang, X. Yang, H. Chen, E. Bi, I. Ashraful, M. Gratzel, L. Han, *Science*, 2015, **350**, 944-948.
- M. Yin, F. Xie, H. Chen, X. Yang, F. Ye, E. Bi, Y. Wu, M. Cai and L. Han, J. Mater. Chem. A, 2016, 4, 8548-8553.
- W. Chen, Y. Wu, J. Liu, Ch. Qin, X. Yang, A. Islam, Y.-B. Cheng, L. Han, *Energy Environ. Sci.*, 2015, 8, 629-640.
- Y. Qin, J. Song, Q. Qiu, Y. Liu, Y. Zhao, L. Zhu, Y Qiang, J. Alloys. Compd., 2019, 810, 151970.
- W. J. Scheideler, N. Rolston, O. Zhao, J. Zhang, R. H. Dauskardt, *Adv. Energy Mater.*, 2019, 9,1803600.
- J. H. Kim, P. W. Liang, S. T. Williams, N. Cho, C.C. Chueh, M. S. Glaz, D. S. Ginger, A. K. Y. Jen, *Adv. Mater.*, 2015, 27, 695–701.
- W. Chen, Y.H. Wu, J. Fan, A.B. Djurisic, F.Z. Liu, H.W. Tam, A. Ng, C. Surya, W. K. Chan, D. Wang, Z. B. He, *Adv. Energy Mater.*, 2018, 8, 1703519.
- A. B. Huang, L. Lei, Y. X. Chen, Y. Yu, Y. J. Zhou, Y. Liu, S.W. Yang, S. H. Bao, R. Li,
 P. Jin, Sol. Energy Mater. Sol. Cells, 2018, 182,128–135.
- K. Yao, F. Li, Q.Q. He, X.F. Wang, Y.H. Jiang, H.T. Huang, A.K.Y. Jen, *Nano Energy*, 2017, 40, 155–162.
- Y. Wei, K. Yao, X.F. Wang, Y.H. Jiang, X.Y. Liu, N.G. Zhou, F. Li, *Appl. Surf. Sci.*, 2018, 427, 782–790.
- A. B. Huang, J. T. Zhu, J. Y. Zheng, Y. Yu, Y. Liu, S. W. Yang, S. H. Bao, L. Lei, P. Jin, J. Mater. Chem. C, 2016, 4, 10839–10846.

- Y. J. X. Wan, Z. Qiu, H. Zhang, X. Zhu, I. Sikandar, X. Liu, X. Chen, B. Cao, ACS Appl. Energy Mater., 2018, 1, 3947–3954.
- M. A. Park, I.J. Park, S. Park, J. Kim, W. Jo, H. J. Son, J. Y. Kim, *Curr. Appl. Phys.*, 2018, 18, S55–S59.
- W. Y. Nie, H. H. Tsai, J. C. Blancon, F. Z. Liu, C. C. Stoumpos, B. Traore, M. Kepenekian, O. Durand, C. Katan, S. Tretiak, J. Crochet, P. M. Ajayan, M. G. Kanatzidis, J. Even, A. D. Mohite, *Adv. Mater.*, 2018, **30**, 170387.
- G. J. Li, Y. B. Jiang, S. B. Deng, A. W. Tam, P. Xu, M. Wong, H. S. Kwok, *Adv. Sci.*, 2017, 4,1700463.
- 16. J. K. Zhang, W. J. Mao, X. Hou, J. J. Duan, J. P. Zhou, S. M. Huang, O. Y. Wei, X. H. Zhan, Z. Sun, X. H. Chen, *Sol. Energy*, 2018, **174**, 1133–1141.
- 17. W. Chen, F. Z. Liu, X. Y. Feng, A. B. Djurisic, W. K. Chan, Z. B. He, *Adv. Energy Mater.*, 2017, **7**, 1700722.
- X. Xia, Y. Jiang, Q. Wan, X. Wang, L. Wang, F. Li, ACS Appl. Mater. Interfaces, 2018
 10 (51), 44501–44510.
- S. Teo, Z. L. Guo, Z. Xu, C. Zhang, Y. Kamata, S. Hayase, T. Ma, *Chem. Sus. Chem.*, 2018, 12 (2), 518–526.
- 20. S. Seo, S. Jeong, C. Bae, N. G. Park, H. Shin, Adv. Mater., 30, 2018, 1801010.
- J. He, E. Bi, W. Tang, Y. Wang, Z. Zhou, X. Yang, H. Chen, L. Han, Sol. RRL, 2018,2, 1800004.
- 22. G. D. Niu, S. Y. Wang, J. W. Li, W. Z. Li, L. D. Wang, J. Mater. Chem. A, 2018, 6, 4721–4728.
- 23. X. Yin, M. Que, Y. Xing and W. Que, J. Mater. Chem. A, 2015, 3, 24495–24503.

- 24. Y. Wu, F. Xie, H. Chen, X. Yang, H. Su, M. Cai, Z. Zhou, T. Noda, L. Han, *Adv. Mater.*, 2017, **29**, 1701073.
- 25. Y. Wu, X. Yang, W. Chen, Y. Yue, M. Cai, F. Xie, E. Bi , A. Islam, L. Han, Nat. Energy, 2016, 1, 16148.
- 26. F. Xie, C.C. Chen, Y. Wu, X. Li, M. Cai, X. Liu, X. Yang, L. Han, *Energy Environ. Sci.*, 2017, **10**, 1942.