Supplementary Information

Engineering Pore Environment of Metal-Organic Framework Membrane via Modification of Secondary Building Units for Improved Gas Separation

Yang Feng^a ‡, Zhikun Wang^b ‡, Weidong Fan^a, Zixi Kang^{b, c, *}, Shou Feng^a, Lili Fan^b, Songqing Hu^b, Daofeng Sun^{a, b, *}

^aCollege of Science, China University of Petroleum (East China), Qingdao, Shandong, 266580, PR China.

^bSchool of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, PR China.

^cState Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China.

‡ These authors equally contributed to this work.

Contents

1. Crystal data and structure refinement for soc-MOF-IM	1
2. Characterizations of crystals	2
3. Characterizations of membranes	6
4. Gas separation performances of membranes	7
5. Simulations for gas separation performances	9

1. Crystal data and structure refinement for soc-MOF-IM

Identification code	soc-MOF-IM (PCN-250-IM)
CCDC number	1956752
Empirical formula	$C_{105}H_{66}Fe_{12}N_{18}O_{61}$
Formula weight	3225.95
Crystal system	cubic
Space group	P-43n
a/Å	21.9666(2)
α/°	90
Volume/Å ³	10599.6(3)
Z	2
ρcalcg/cm ³	1.011
µ/mm-1	6.927
F(000)	3244.0
2@ range for data collection/°	8.05 to 141.126
Index ranges	$\textbf{-15} \leqslant h \leqslant \textbf{19}, \textbf{-17} \leqslant k \leqslant \textbf{23},$
	$-26 \leqslant l \leqslant 23$
Reflections collected	8275
Independent reflections	$3061 [R_{int} = 0.0441, R_{sigma} = 0.0784]$
Data/restraints/parameters	3061/60/167
Goodness-of-fit on F ²	1.057
Final R indexes [I>= 2σ (I)]	R1 = 0.0464, $wR2 = 0.1216$
Final R indexes [all data]	R1 = 0.0588, $wR2 = 0.1306$
Largest diff. peak/hole / e Å-3	0.41/-0.34

 Table S1. Crystal data and structure refinement of soc-MOF-IM

2. Characterizations of crystals

Fig. S1. $\rm N_2$ adsorption/desorption isotherms of soc-MOF and soc-MOF-IM at 77 K.

Table S2. The surface area, pore volume, pore size obtained by N_2 (77 K) adsorption–desorption experiment for **soc-MOF** and **soc-MOF-IM**.

Sample	BET SA	Langmuir SA	Pore Volume	Pore Size
	(m ² /g)	(m ² /g)	(cm^3/g)	(Å)
soc-MOF	989.15	1,476.40	0.5232	6.8 9.3
soc-MOF-IM	883.70	1,270.60	0.4403	4.8 5.3

Fig. S2. TGA of soc-MOF and soc-MOF-IM.

Thermogravimetric Analysis. To explore the thermal stability of **soc-MOF and soc-MOF-IM**, TGA test was performed. And the result proves that both two crystals are stable up to 415 °C. There is a weight loss of 9.40% in the range of 40–200 °C, which could be attributed to the loss of water and solvent molecule. The partial collapse of two MOFs structures occurs above 415 °C, and a plateau is observed before 545 °C for the complete framework collapse.

Fig. S3. (a) *in-situ* temperature-dependent (25 – 400 °C) PXRD of **soc-MOF-IM**, (b) PXRD of **soc-MOF and soc-MOF-IM** after immersing in aqueous solution with different pH (2 - 13).

Fig. S4. Distribution probabilities of pore window size of cage 2 in b axis direction at (a) 273 K and (b) 298 K. (Red represents the aperture range which H_2 cannot passed, and blue represents the passable range.)

3. Characterizations of membranes

Fig. S5. Cross-section SEM images and EDS mapping of soc-MOF and soc-MOF-IM.

Fig. S6. ¹H NMR spectrum of soc-MOF-IM (400 MHz, DMSO-d⁶).

4. Gas separation performances of membranes

Fig. S7. Single gas permeance for soc-MOF-IM at 100 $^{\circ}$ C under the pressure of 1.8 bar.

Membrane	Temperature (°C)	H ₂ permeance (GPU)	CO ₂ permeance (GPU)	N ₂ permeance (GPU)	CH ₄ permeance (GPU)
Substrate	25	10873±251	10698±393	10335±79	10379 ± 535
soc-MOF	25	639.5±67.1	107.5±9	284±7	400±19.7
soc-MOF- IM	25	148.3±32.9	2.87±0.29	6.98±0.70	5.76±1.30
soc-MOF- IM	100	328±16	26±16	31.4±4.62	93±24.04

Table S3. Single gas permeance for substrate, soc-MOF and soc-MOF-IM

Membrane	$S_{ m H2}(m cm^3$	$S_{\rm CO2}({\rm cm^3}$	$S_{ m H2/CO2}$	$D_{ m H2}(m cm^2s^-$	$D_{\rm CO2}({\rm cm^2s^{-1}})$	$D_{ m H2/CO2}$
	(STP) cm ⁻³	(STP) cm ⁻³		¹)		
	cmHg ⁻¹)	cmHg ⁻¹)				
soc-MOF	5.45*10 ⁻³	0.6288	0.00867	2.93*10 ⁻⁴	4.27*10 ⁻⁷	685
soc-MOF-IM	4.05*10 ⁻³	0.7532	0.00535	9.14*10 ⁻⁵	1.03*10 ⁻⁸	8911

Table S4. The value of solubility (*S*) and diffusivity (*D*) of CO_2 and H_2 measured on the **soc-MOF-IM** membrane at 298 K under the pressure of 1.8 bar.

Table S5. Mixture gas permeance and selectivity for **soc-MOF** and **soc-MOF-IM** membranes at 25 °C under the pressure of 1.8 bar.

Membrane	H ₂ permeance (GPU)	CO ₂ permeance (GPU)	H_2 / CO ₂ Selectivity
soc-MOF	376±41	146±11	2.6±0.3
soc-MOF-IM	84.0±13	4.4±0.1	19.0±2

5. Simulations for gas separation performances

Fig. S8. Simulation study of pure CO_2 (40 molecules) penetrating through a **soc-MOF** nanosheet. (a) Initial structure; (b) snapshot after 10 ns of simulation. An argon plate is exerted to separate the feed and permeate chambers. Color of the atoms: Ar, cyan; C, gray; O, red; N, blue; Fe, purple; H, white.

Fig. S9. Simulation study of pure H_2 (40 molecules) penetrating through a **soc-MOF** nanosheet. (a) Initial structure; (b) snapshot after 10 ns of simulation. An argon plate is exerted to separate the feed and permeate chambers. Color of the atoms: Ar, cyan; C, gray; O, red; N, blue; Fe, purple; H, white.

Fig. S10. Simulation study of mixed H_2 (40 molecules) and CO_2 (40 molecules) penetrating through a **soc-MOF** nanosheet. (a) Initial structure; (b) snapshots after 10 ns and 50 ns of simulation. An argon plate is exerted to separate the feed and permeate chambers. Color of the atoms: Ar, cyan; C, gray; O, red; N, blue; Fe, purple; H, white.

Fig. S11. Simulation study of pure CO_2 (40 molecules) penetrating through a **soc-MOF-IM** nanosheet. (a) Initial structure; (b) snapshot after 10 ns of simulation. An argon plate is exerted to separate the feed and permeate chambers. Color of the atoms: Ar, cyan; C, gray; O, red; N, blue; Fe, purple; H, white.

Fig. S12. Simulation study of pure H_2 (40 molecules) penetrating through a **soc-MOF-IM** nanosheet. (a) Initial structure; (b) snapshot after 10 ns of simulation. An argon plate is exerted to separate the feed and permeate chambers. Color of the atoms: Ar, cyan; C, gray; O, red; N, blue; Fe, purple; H, white.

Fig. S13. Simulation study of mixed H_2 (40 molecules) and CO_2 (40 molecules) penetrating through a **soc-MOF-IM** nanosheet. (a) Initial structure; (b) snapshots after 10 ns and 50 ns of simulation. An argon plate is exerted to separate the feed and permeate chambers. Color of the atoms: Ar, cyan; C, gray; O, red; N, blue; Fe, purple; H, white.