Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Heterostructured CoP/MoO₂ on Mo Foil as High-Efficiency Electrocatalysts for Hydrogen

Evolution Reaction in both Acidic and Alkaline Media

Huihui Zhao¹, Zhi Li¹, Xiaoping Dai^{*}, Meilin Cui, Fei Nie, Xin Zhang, Ziteng Ren, Zhaohui Yang,

Yonghao Gan, Xueli Yin, Yao Wang, Weiyu Song*

State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China

* CORRESPONDING AUTHOR.

- Prof. X. P. Dai: daixp@cup.edu.cn
- Prof. W. Y. Song: songwy@cup.edu.cn

Fig. S1. (a) SEM image of Co precursor-MoO₂/MF, (b) XRD pattern of Co precursor-MoO₂/MF.

Fig. S2. EDS of CoP-MoO₂/MF

Fig. S3. (a) TEM image of CoP-MoO₂/MF peeling off from the CoP-MoO₂/MF, (b) Elemental mapping of O, P and Co for CoP nanoneedles.

Fig. S4. (a) SEM image of residual CoP-MoO₂/MF after ultrasound treatment and (b) the corresponding EDS.

Fig. S5. Elemental mapping of O, P and Mo for P-MoO₂/MF and (b) the corresponding EDS.

Fig. S6. (a) XRD patterns of MoO2/MF and MoO₂/MF-400. The Raman spectra of (b) MoO₂/MF and (c) CoP-MoO₂/MF.

Fig. S7. SEM image of CoP/MF.

Fig. S8. LSV curves of MoO_2/MF and P-MoO₂/MF in (a) 1.0 M KOH and (b) 0.5 M H₂SO₄ media.

Electrocatalysts	Substrate	Overpotential at 10 mA cm ⁻² (mV)	Ref.
CoP-MoO ₂ /MF	Mo Foil	42	This work
(CoP) _{0.54} -(FeP) _{0.46} -NRs/G	Graphene	97	1
HNDCM-Co/CoP	Porous Carbon Membrane	135	2
Ni0.33Co0.67Se2	Carbon Fiber Paper	106	3
CoP/Co-MOF	Carbon Fiber	34	4
NiCoP-CoP/NF	Ni Foam	73	5
CoP-400-E15	Ti Plate	86	6
CoP-CeO ₂ /Ti	Ti Mesh	43	7
CoPS/CP	Carbon Paper	107	8
CoNP@C	Carbon Cloth	58	9
Mo-doped Cu _{2.5} CoO _x	Ni Foam	88	10

 Table S1. HER performance of CoP-MoO₂/MF and several reported representative non-noble metal based electrocatalysts in alkaline solution (1.0 M KOH).

Fig. S9. Calculated exchange current densities by extrapolating the Tafel plots in (a) 1.0 M KOH media and (b) $0.5 \text{ M H}_2\text{SO}_4$.

Fig. S10. (a) CV curves recorded between -0.2 V and 0.6 V vs. RHE in 1.0 PBS (pH=7) with a scan rate of 50 mV s⁻¹. (b) Calculated turnover frequencies for CoP-MoO₂/MF, CoP/MF, and MoO₂/MF in 1.0 M KOH and 0.5 M H₂SO₄.

Fig. S11. Electrical equivalent circuit model used for fitting of EIS.

Catalysts	Electrolyte	Potential (mV vs. RHE)	$R_{s}\left(\Omega ight)$	$R_{1}\left(\Omega\right)$	$R_{ct}\left(\Omega\right)$
	1.0 M KOH		1.42	1.84	2.57
CoP-MoO ₂ /MF		-100			
	$0.5 \text{ M} \text{H}_2\text{SO}_4$		1.25	0.11	1.47
	1.0 M KOH		1.68	1.90	23.54
CoP/MF		-100			
	$0.5 \text{ M} \text{H}_2\text{SO}_4$		1.43	0.20	6.90
	1.0 M KOH		1.76	55.45	521.50
MoO ₂ /MF	0.5 M H ₂ SO ₄	-100	1.46	0.67	414.30

Table S2. Values of elements in equivalent circuit model resulted from fitting the EIS.

Fig. S12. CVs (0.23-0.33 V *vs.* RHE) of (a) CoP-MoO₂/MF, (b) CoP/MF, (c) MoO₂/MF, (d) The current density at 0.28 V (*vs.* RHE) as a function of scan rate fitted to a linear regression allows for the estimation of C_{dl} in 1.0 M KOH media.

Fig. S13. (a) SEM images, XPS survey spectra of (b) Mo 3d, (c) Co 2p, and (d) P 2p after stability test in 1.0 M KOH.

Electrocatalysts	Substrate	Overpotential at 10 mA cm ⁻² (mV)	Ref.
CoP-MoO ₂ /MF	Mo Foil	65	Our work
CoP/CC	Carbon Cloth	67	11
CoP/NPC/TF	Ti Foil	91	12
CoP/CNT	Carbon Nanotubes	122	13
HNDCM-Co/CoP	Porous Carbon Membrane	138	2
Ni0.33C00.67Se2	Carbon Fiber Paper	65	3
CC@N-CoP	Carbon Cloth	42	14
Co ₉ S ₈ -30@MoS _{2x} /CC	Carbon Fiber Paper	98	15
Fe ₂ P@rGO	Ti Plate	101	16
CoS/Ni/P	Ni Foam	41	17
Ni ₂ P/MoS ₂ /N:CNT	Carbon	57.8	18

Table S3. HER performance of CoP-MoO2/MF and several reported representative non-noble metalbased electrocatalysts in $0.5 \text{ M H}_2\text{SO}_4$.

Fig. S14. CVs (0.1-0.2 V *vs.* RHE) of (a) CoP-MoO₂/MF, (b) CoP/MF, (c) MoO₂/MF, (d) The current density at 0.15 V (*vs.* RHE) as a function of scan rate fitted to a linear regression allows for the estimation of C_{dl} in 0.5 M H₂SO₄.

Fig. S15. LSV curves of CoP-MoO₂/MF in (a) 1.0 M KOH and (b) 0.5 M H₂SO₄ with the 2.36, 3.43, 4.17, 5.02 % CoP loading.

Fig. S16. LSV curves (a, c) and durability tests (b, d) for CoP-MoO₂/MF and CoP+MoO₂/MF in 1.0 M KOH and 0.5 M H₂SO₄, respectively.

Fig. S17. Primitive cell crystal structures of (a) CoP (a=5.064Å, b=3.283Å, c=5.513Å; $\alpha = \gamma = \beta = 90^{\circ}$) and (b) MoO₂ (a=5.614Å, b=4.925Å, c=5.686Å; $\alpha = \beta = 90^{\circ}$, $\gamma = 120^{\circ}$).

Fig. S18. Optimized surface slab structure models for (a) CoP (011), (b) $MoO_2(011)$, and (c) CoP- $MoO_2(011)$.

Fig. S19. Hydrogen absorbed position on the surface for (a) CoP (011), (b) $MoO_2(011)$ and (c) CoP- $MoO_2(011)$.

I abic 54. Dader charge	analysis of the Col cluster a	
Numbers of atoms	CoP cluster	CoP-MoO ₂
Col	-0.223	-0.049
Co2	-0.248	-0.333
Co3	-0.114	-0.126
Co4	-0.232	-0.044
P1	0.249	-0.777
P2	0.152	0.080
P3	0.227	0.032
P4	0.188	-0.721
total	0	-1.938

Table S4. Bader charge analysis of the CoP cluster and CoP-MoO₂.

Reference

- 1 B. Liu, L. Huo, Z. Gao, G. Zhi, G. Zhang and J. Zhang, *Small*, 2017, 13, 1700092.
- 2 H. Wang, S. Min, Q. Wang, D. Li, G. Casillas, C. Ma, Y. Li, Z. Liu, L.-J. Li and J. Yuan, ACS Nano, 2017, 11, 4358-4364.
- 3 C. Xia, H. Liang, J. Zhu, U. Schwingenschlögl and H. N. Alshareef, *Adv. Energy Mater.*, 2017, 7, 1602089.
- 4 T. Liu, P. Li, N. Yao, G. Z. Cheng, S. Chen, W. Luo and Y. Yin, *Angew. Chem. Int. Ed.*, 2019, 58, 4679-4684.
- 5 H. Liu, X. Ma, H. Hu, Y. Pan, W. Zhao, J. Liu, X. Zhao, J. Wang, Z. Yang and Q. Zhao, *ACS Appl.*

Mater. Interfaces, 2019, 11, 15528-15536.

- 6 X. Yu, M. Wang, X. Gong, Z. Guo, Z. Wang and S. Jiao, Adv. Energy Mater., 2018, 8, 1802445.
- 7 R. Zhang, X. Ren, S. A. Hao, R. X. Ge, Z. Liu, A. M. Asiri, L. Chen, Q. J. Zhang and X. P. Sun, J.

Mater. Chem. A, 2018, 6, 1985-1990.

- 8 J. Chang, Y. Ouyang, J. Ge, J. Wang, C. Liu and W. Xing, *J. Mater. Chem. A*, 2018, 6, 12353-12360.
 9 Q. Jin, B. Ren, D. Li, H. Cui and C. Wang, *Nano Energy*, 2018, 49, 14-22.
- 10 M. Liu, J. Wang, Q. Tian, Y. Liu, P. Li, W. Li, N. Cai, Y. Xue, W. Chen and F. Yu, *ChemElectroChem*, 2019, **6**, 1738-1744.
- 11 J. Tian, Q. Liu, A. M. Asiri and X. Sun, J. Am. Chem. Soc., 2014, 136, 7587-7590.
- 12 X. Huang, X. Xu, C. Li, D. Wu, D. Cheng and D. Cao, Adv. Energy Mater., 2019, 9, 1803970.
- 13 Q. Liu, J. Tian, W. Cui, P. Jiang, N. Cheng, A. M. Asiri and X. Sun, *Angew. Chem. Int. Ed.*, 2014, 53, 6710-6714.
- 14 Q. Zhou, Z. Shen, C. Zhu, J. Li, Z. Ding, P. Wang, F. Pan, Z. Zhang, H. Ma, S. Wang and H. Zhang, *Adv. Mater.*, 2018, **30**, 1800140.
- 15 X. Zhou, X. Yang, M. N. Hedhili, H. Li, S. Min, J. Ming, K. Huang, W. Zhang and L. J. Li, *Nano Energy*, 2017, **32**, 470-478.
- 16 M. Liu, L. Yang, T. Liu, Y. Tang, S. Luo, C. Liu and Y. Zeng, J. Mater. Chem. A, 2017, 5, 86088615.
- 17 J. Sun, M. Ren, L. Yu, Z. Yang, L. Xie, F. Tian, Y. Yu, Z. Ren, S. Chen and H. Zhou, *Small*, 2019, 15, 1804272.

18 M. Kim, M. a. R. Anjum, M. Lee, B. J. Lee and J. S. Lee, Adv. Funct. Mater., 2019, 29, 1809151.