Atomically dispersed Pd-based catalysts via constructing spatial structure with high performance for lean methane combustion

Supporting Information

Qiuyan Duan^a, Wenzhi Li^{a,*}, Chenghua Zhang^{b,c}, Song Sun^{d,e}, Yang Pan^e, Xiong Zhou^c, Yang Liu^a, Kun Chen^a, Cunshuo Li^a, Xianzhou Wang^b.

^a Laboratory of Basic Research in Biomass Conversion and Utilization, Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei, Anhui 230026, PR China

^b State Key Lab Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, PR China

° Synfuels China Technology Co Ltd, SynCat Beijing, Beijing 101407, PR China

^d School of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui 230601, PR China

^eNational Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, PR China

Supplementary Figure 1. XRD patterns of the as-prepared samples

Supplementary Figure 2. TEM image of 0.23 wt% Pd/SiO₂(cal)-ZrO₂ catalyst. The modified support was calcined at 500 ° C in air for 3 hours, and then loaded with 0.23 wt% palladium. The catalyst was marked as 0.23 wt% Pd/SiO₂(cal)-ZrO₂ catalyst. Amorphous silica was coated on the surface of zirconia. It was obvious that palladium species were in the form of nanoparticles.

Supplementary Figure 3. Methane conversion as the function as temperature over 0.23 wt% Pd/SiO₂(cal)-ZrO₂ catalyst. Reaction gas: 1 vol% CH_4 +99 vol% Air; GHSV: 30,000 ml/h⁻¹. g⁻¹.

Supplementary Figure 4. Methane conversion as the function as temperature over other catalysts

Supplementary Figure 5. In situ DRIFTS spectra of 0.23 wt% Pd/SiO_2 -ZrO₂ catalyst and 0.23 wt% Pd/ZrO_2 catalyst in the presence of 1% CH_4 /Air at room temperature.

Supplementary Table 1. Summarized nitrogen adsorption/desorption data and actual palladium and silicon loadings of various catalysts.

Pd loading	S	iO ₂ -ZrO ₂ su	upported	ZrO ₂ supported			
amount (wt	Si ^a	Pd ^a	\mathbf{S}_{BET}	$V_p{}^b$	Pd ^a	\mathbf{S}_{BET}	V_p^{b}
%)	loading	loading	(m^{2}/g)	(cm^3/g)	loading	(m^{2}/g)	(cm^{3}/g)
	(wt %)	(wt %)			(wt %)		
0	4.512	0	27.53	0.247	0	27.41	0.189
0.23	4.492	0.213	29.78	0.250	0.215	28.42	0.243
0.46	4.498	0.441	30.05	0.243	0.439	28.70	0.235
1.38	4.489	1.355	31.60	0.264	1.362	27.33	0.226

^a Data were determined by the ICP-AES technique.

^b Data were obtained from BJH Adsorption cumulative volume of pores between 17.000

Å and 3,000.000 Å diameter.

Supplementary Table 2. Performance comparison of various Palladium-based catalysts

Sample	WHSV	T50	Т90	T100	Reactant gas	References
	(ml/g-1.h-1)	(°C)	(°C)	(°C)		
Pd5/MgAlO ₂	20,000		477		CH4(1%)/Air	[1]
Pd2/LaFeO ₃	18,400		460		CH ₄ (1%)/O ₂ (4.4%)/He	[2]
Pd@CeO ₂ /H-Al ₂ O ₃	200,000			400	CH ₄ (0.5%)/O ₂ (2%)/Ar	[3]
Pd0.5/g-Al2O ₃	120,000		563		CH ₄ (1%)/O ₂ (20%)/N ₂	[4]
Pd1/CeO ₂ /PG151	30,000			350	CH ₄ (1%)/O ₂ (18%)/N ₂	[5]
Pd0.8/Co0.2	40,000	300	370		CH ₄ (0.5%)/O ₂ (2%)/Ar	[6]
LaAlPd-H-900	15,000		368		CH ₄ (1%)/O ₂ (20%)/Ar	[7]
Pd/Na-MOR	70,000			450	CH ₄ (1%)/O ₂ (4%)/N ₂	[8]
Pd/o-CeO ₂	30,000		348		CH4(1%)/Air	[9]
Pd/NA-Al ₂ O ₃	15,000			370	CH ₄ (1%)/O ₂ (20%)/Ar	[10]
Pd0.8Ni0.2@S-1	24,000		360		CH ₄ (1%)/ O ₂ (20%) / N ₂	[11]
Pd6/CeO ₂ -0.1/Co ₃ O ₄	60,000		350		CH ₄ (0.5%)/O ₂ (2%)/He	[12]
Pd@CeO ₂ /Si-Al ₂ O ₃	50,000	368	416		CH ₄ (1%)/ O ₂ (20%) / N ₂	[13]
6LSCPd	24,000		580		CH ₄ (1%)/ O ₂ (6%) /CO(6)/ He	[14]
Pd/6P-OMA	30,000			345	CH ₄ (1%)/ O ₂ (5%) / N ₂	[15]
Pd-NiCo ₂ O ₄ /SiO ₂	30,000			378	CH ₄ (1%)/Air	[16]
Pd/CeZr5	60,000			500	CH ₄ (1%)/O ₂ (4%)/He	[17]
Pd/15TA	50,000		340		CH ₄ (1%)/ O ₂ (10%) / N ₂	[18]
Pd/ADP-OMA	50,000		420		CH ₄ (1%)/ O ₂ (5%) / N ₂	[19]
PdCo/Hal	72,000			420	CH ₄ (1%)/ O ₂ (20%) / Ar	[20]
Pd-CeO ₂ CASs/Al ₂ O ₃	60,000			410	CH ₄ (1%)/ O ₂ (4%) / N ₂	[21]
Pd1.38/SiO ₂ -ZrO ₂	30,000			330	CH4(1%)/Air	This work

for lean methane combustion.

Reference

[1] S. Tanasoi, G. Mitran, N. Tanchoux, T, Cacciaguerra, F. Fajula, I. Săndulescu, D. Tichit, I. C. Marcu, Appl. Catal. A-Gen., 2011, 395, 78-86.

[2] A. Eyssler, A. Winkler, P. Mandaliev, P. Hug, A. Weidenkaff, D. Ferri, Appl. Catal. B-Environ., 2011, 106, 494-502.

[3] M. Cargnello, J. J. Delgado Jaén, J. C. Hernández Gar rido, K. Bakhmutsky, T. Montini, J. J. Calvino Gámez, R. J. Gorte, P. Fornasiero, *Science*, 2012, 337, 713-717.

[4] J. H. Park, J. H. Cho, Y. J. Kim, E. S. Kim, H. S. Han, C. H. Shin, Appl. Catal. B-Environ., 2014, 160, 135-143.

[5] M. Hoffmann, S. Kreft, G. Georgi, G. Fulda, M. M. Pohl, D. Seeburg, C. B-Karin, E. V. Kondratenko, S. Wohlrab, Appl. Catal. B-Environ., 2015, 179, 313-320.

[6] J. J. Willis, E. D. Goodman, L. H. Wu, A. R. Riscoe, P. Martins, C. J. Tassone, M. Cargnello, J. Am. Chem. Soc., 2017, 139, 11989-11997.

[7] X. W. Yang, Q. Gao, Z. Y. Zhao, Y. L. Guo, Y. Guo, L. Wang, Y. S. Wang, W. C. Zhan, Appl. Catal. B-Environ., 2018, 239, 373-382.

[8] A. W. Petrov, D. Ferri, F. Krumeich, M. Nachtegaal, J. A. Bokhoven, O. Kröcher, Nat. commun., 2018, 9, 2545.

[9] Y. Y. Lei, W. Z. Li, Q. C. Liu, Q. Z. Lin, X. S. Zheng, Q. F. Huang, S. N. Guan, X. H. Wang, C. X. Wang, F. Y. Li, Fuel, 2018, 233, 10-20.

[10] X. W. Yang, Q. Li, E. Lu, Z. Q. Wang, X. Q. Gong, Z. Y. Yu, Y. Guo, L. Wang, Y. L. Guo, W. C. Zhan, J. S. Zhang, S. Dai, Nat. commun., 2019, 10, 1611.

[11] Z. S. Zhang, L. W. Sun, X. F. Hu, Y. B. Zhang, H. Y. Tian, X. G. Yang, Appl. Surf. Sci., 2019, 494, 1044-1054.

[12] W. Li, D. P. Liu, X. L. Feng, Z. Zhang, X. Jin, Y. Zhang, Adv. Energy. Mater., 2019, 9, 1803583.

[13] D. Pi, W. Z. Li, Q. Z. Lin, Q. F. Huang, H. Q. Hu, C. Y. Shao, Energy Technol., 2016, 4, 943-949.

[14] Y. Farhang, E. T-Nassaj, M. Rezaei, Ceram. Int., 2018, 44, 21499-21506.

[15] X. H. Chen, Y. Zheng, F. Huang, Y. H. Xiao, G. H. Cai, Y. C. Zhang, Y. Zhang, L. L. Jiang, ACS Catal., 2018, 8, 11016-11028.

[16] Q. F. Huang, W. Z. Li, Q. Z. Lin, X. S. Zheng, H. B. Pan, D. Pi, C. Y. Shao, C. Hu, H. T. Zhang, J. Energy Institute, 2018, 91, 733-742.

[17] I. B. Saïd, K. Sadouki, S. Masse, T. Coradin, L. S. Smiri, S. Fessi, *Microporous Mesoporous Mater.*, 2018, 260, 93-101.

[18] B. X. Chen, J. Lin, X. H. Chen, Y. L. Chen, Y. L. Xu, Z. X. Wang, W. Zhang, Y. Zheng, ACS omega, 2019, 4, 18582-18592.

[19] X. H. Chen, Y. Zheng, Y. L. Chen, Y. L. Xu, F. L. Zhong, W. Zhang, Y. H. Xiao, Y. Zheng, Int. J. Hydrogen Energy., 2019, 44, 27772-27783.

[20] Y. H. Ahmad, A. T. Mohamed, K. A. Mahmoud, A. S. Aljaber, S. Y. Al-Qaradawi, RSC Adv., 2019, 9, 32928-32935.

[21] X. W. Yang, C. H. Du, Y. L. Guo, Y. Guo, L. Wang, Y. S. Wang, W. C. Zhan, J. Rare Earths, 2019, 37, 714-719.