Supporting Information

Nitrogen Electroreduction Performance of Transition Metal Dimers Embedded

into N-Doped Graphene: A Theoretical Prediction

Hongyan Li,^a Zhifeng Zhao,^b Qinghai Cai,^a Lichang Yin,^{c,*} Jingxiang Zhao^{a,*}

^a College of Chemistry and Chemical Engineering, and Key Laboratory of Photonic and

Electronic Bandgap Materials, Ministry of Education, Harbin Normal University,

Harbin, 150025, China

^b College of Chemistry, Guangdong University of Petrochemical Technology,
 Maoming, 525000, China

^c Shenyang National Laboratory for Materials Science, Institute of Metal Research,

Chinese Academy of Sciences, Shenyang, 110016, China

* To whom correspondence should be addressed. Email: xjz_hmily@163.com or zhaojingxiang@hrbnu.edu.cn (JZ); lcyin@imr.ac.cn (LY)

Adsorption Intermediates	-TS	elementary reaction	ΔG_{with}	$\Delta G_{without}$
N_2^*	-0.19	$N_2 \rightarrow {N_2}^*$	-0.49	-0.30
N_2H^*	-0.13	${N_2}^* \!\rightarrow \! N_2 H^*$	0.28	0.22
N-NH ₂ *	-0.12	$N_2H^* \rightarrow N-NH_2^*$	0.06	0.05
\mathbf{N}^{*}	-0.04	$N-NH_2^* \rightarrow N^*+NH_3$	-0.22	-0.30
NH*	-0.09	$\mathrm{N}^* \! \rightarrow \mathrm{NH}^*$	-0.46	-0.41
$\mathrm{NH_2}^*$	-0.14	$\mathrm{NH}^* \to \mathrm{NH_2}^*$	-1.39	-1.34
NH ₃ *	-0.16	${\rm NH_2}^* \rightarrow {\rm NH_3}^*$	-0.07	-0.05
		$\mathrm{NH_3}^* \rightarrow \mathrm{NH_3}$	1.30	1.14
NH-NH*	-0.15	$N_2H^* \rightarrow NH\text{-}NH^*$	0.51	0.53
NH-NH ₂ *	-0.17	$\text{NH-NH}^* \rightarrow \text{NH-NH}_2^*$	-1.01	-0.99
NH ₂ -NH ₂ *	-0.25	$\mathrm{NH}\text{-}\mathrm{NH}_2^* \rightarrow \mathrm{NH}_2\text{-}\mathrm{NH}_2^*$	0.78	0.86
		$NH_2-NH_2^* \rightarrow NH_2^* + NH_3$	-2.29	-2.40

Table S1. The calculated entropy correction (*TS*, eV) of different reaction intermediates of NRR on FeRh@NPG and its effects on the free energy change (ΔG_{with} and $\Delta G_{without}$) of each elementary reaction along the distal and alternative mechanisms,.

M_1M_2	E_{b}	$E_{\rm c} ({\rm exp.})^{\rm a}$	$E_{\rm c}$ (calc.)
Fe <u>Fe</u>	-10.72	-4.30/-4.30	-4.83/-4.83
Fe <u>Co</u>	-10.42	-4.30/-4.40	-4.83/-4.85
Fe <u>Ni</u>	-10.55	-4.30/-4.40	-4.83/4.64
Fe <u>Cu</u>	-9.65	-4.30/-3.50	-4.83/-3.86
Fe <u>Rh</u>	-9.47	-4.30/-5.80	-4.83/-5.80
Fe <u>Ru</u>	-9.91	-4.30/-6.70	-4.83/-7.24
Fe <u>Pd</u>	-8.32	-4.30/-3.90	-4.83/4.14
<u>Mo</u> Fe	-9.04	-6.80/-4.30	-6.83/-4.83
<u>Mo</u> Co	-9.20	-6.80/-4.40	-6.83/-4.85
<u>Mo</u> Cu	-7.28	-6.80/-3.50	-6.83/-3.86
<u>Mo</u> Ru	-8.02	-6.80/-6.70	-6.83/-7.24
<u>Mo</u> Mo	-6.99	-6.80/-4.30	-6.83/-6.83

Table S2. The comparison between the binding energies of BACs on NPG and the cohesive energies of the relevant individual metal atoms.

^{a)} The present experimental values E_c (exp.) were taken from Kittel and C.,

Introduction to solid state physics, Wiley in 2005.

Fig. S1. The optimized configurations of metal dimers embedded into N-doped porous graphene. Both top and side views were provided.

Fig. S2. The computed band structures of various BACs@NPG. The Fermi level was set to zero.

Fig. S3. The differential charge density distribution of BACs@NPG at isosurfaces of $\pm 0.01 \text{ e/Å}^3$. The charge accumulation and depletion are denoted by cyan and yellow colors, respectively.

Fig. S4. The differential charge density distribution of N₂ molecule adsorbed on these BACs@NPG at isosurfaces of ± 0.01 e/Å³. The charge accumulation and depletion are denoted by cyan and yellow colors, respectively.

Fig. S5. The computed adsorption energies of N_2H^* species on various BACs@NPG via end-on and side-on patterns. X represents the unstable adsorption configurations.

Fig. S6. The involved eNRR intermediates along distal and alternating pathways.

Fig. S7. The computed adsorption energies of H^{\ast} and N_{2} on BACs@NPG.

Fig. S8. The computed adsorption energies of H^{*} on N and metal sites of various BACs@NPG.

Fig. S9. The optimized adsorption configurations of N_2 molecule on single (a) Fe and (b) Rh atom supported on N-doped graphene.

Fig. S10. Variations of temperature and energy against time for MD simulations of the FeRh@NPG, and the insets show top and side views of the snapshot of the atomic configuration. The simulation is run at 500 K for 10 ps with a time step of 1 fs.

$$M_{1}-M_{2} \rightarrow \bigwedge_{M_{1}-M_{2}}^{N} \longrightarrow \bigwedge_{M_{1}-M_{2}}^{NH} \longrightarrow \bigwedge_{M_{1}-M_{2}}^{NH_{3}} \longrightarrow \bigwedge_{M_{1}-M_{2}$$

Scheme S1. The possible reaction mechanisms for eNRR on DACs@NPG