SUPPLEMENTARY INFORMATION

Mechanistic understanding of pore evolution enables high performance mesoporous silicon production for lithium-ion batteries

Jake E. Entwistle^{1,2} Gregory Beaucage³ and Siddharth V. Patwardhan^{1*}

¹ Green Nanomaterials Research Group, and ² Centre for Doctoral Training in Energy Storage and its Applications, Department of Chemical and Biological Engineering, The University of Sheffield Mappin Street, Sheffield S1 3JD, UK. ³ Department of Chemical and Materials Engineering, University of Cincinnati, Cincinnati, Ohio 45221, USA. *s.patwardhan@sheffield.ac.uk

Parameter study

Figure S 1, characterisation of BIS, (a) N_2 absorption Isotherm, (b) BJH pore size distribution, (c) SEM image, (d)USAXS data obtained for BIS along with unified fit.

Table S 1. Materials properties of BIS

	BET SSA	BJH PV (cm ³ /g)	USAXS Particle Size		
	(m²/g)		Level1 (nm)	level 2 (nm)	
Bioinspired PEHA	301	0.16	26	370	

Figure S 2. Characterisation of silicon produced during kinetic study of, 2.5:1 Mg:SiO₂ stochimetry reacted between 1 and 10 hours at 650 °C. (a) N_2 absorption lsotherm, (b) BJH pore size distribution, (c) XRD of reaction products before washing with HCl, (d) XRD of reduction products after washing with HCl, (e) purity of silicon samples.

Figure S 3. Characterisation of silicon produced during thermodynamic study of 2.5:1 Mg:SiO2 stoichiometry reacted for 6 hours between temperatures of 550-950 °C. (a) N2 absorption Isotherm, (b) BJH pore size distribution, (c) XRD of reaction products before washing with HCl, (d) XRD of reduction products after washing with HCl, (e) purity of silicon sample.

Figure S 4. Characterisation of silicon produced during stoichiometric study for stoichiometries between 1.5-3.5:1 Mg:SiO2 reacted for 6 hours at 650 °C. (a) N2 absorption Isotherms, (b) BJH pore size distributions, (c) XRD of reaction products before washing with HCL, (d) XRD of reduction products after washing with HCl, (e) purity of silicon samples.

Reaction	BET	BJH PV	APD	wt%	Si _{Cry} Size
Time (h)	SSA	(cm³/g)	(nm)	Si	(nm)
	(m²/g)				
1	232	0.50	10	65	12
3	181	0.46	13	57	11
6	221	0.48	13	57	10
10	186	0.49	14	60	12

Table S 2. Summary of Figure S 2 for the kinetic study of, 2.5:1 Mg:SiO2 stoichiometry reacted between 1 and 10 hours at 650°C

Table	S	З.	Summary	of	Figure	S	3	for	the	thermodynamic	study	of,	2.5:1	Mg:SiO2
stoichi	om	etry	reacted 6	hou	urs at te	mp	era	ature	s be	tween 550 and 9	50°C			

Reaction Temp	BET	BJH PV	APD	wt%	Si _{Cry} Size	USAXS Par	ticle Size
(°C)	SSA	(cm³/g)	(nm)	Si	(nm)	Level 1	Level 2
	(m²/g)					(nm)	(nm)
550	402	0.48	4	29.0	5	25.84	413
650	230	0.48	12	57.3	10	40.28	208
750	185	0.54	13	66.0	13	49.85	333
850	110	0.35	34	87.0	21	16.94	323

950 65 0.10 - 89.3 48 24.86 645

-outside of BJH model range

Table S 4. summary of Figure S 4 for the stoichiometric study of, Mg:SiO2 stoichiometry between 1.5-3.5:1 Mg:SiO2 reacted 6 hours at 650 $^{\circ}\text{C}$

Stoichiometric	BET	BJH PV	APD	wt%	Si _{Cry} Size
Ratio (Mg:SiO ₂)	SSA	(cm ³ /g)	(nm)	Si	(nm)
	(m²/g)				
1.5:1	340	0.50	4	24	11
2.0:1	315	0.55	6	68	6
2.25:1	217	0.56	12	69	10
2.5:1	230	0.48	13	57	10
3.0:1	206	0.43	12*	48	9
3.5:1	271	0.57	28*	23	15

*Bimodal distribution so representative of pore size distribution, see Figure S 4(b)

Figure S 6, USAXS data of porous silicon reduced at temperatures between 550-950 °C. Not all data points shown for clarity.

Figure S 7. Silicon/silica composites reduced at 650 and 850 °C with 2:1, 2.5:1 and 3:1 stoichiometric ratios of Mg:SiO2. (a,c,e) Diffraction patterns of after acid washing. (b,d,f) BJH pore size distributions.

Table S 5, summary of Figure S 7.

Sample	Reduction	BET	BJH	APD	wt%	Si _{Cry}
--------	-----------	-----	-----	-----	-----	-------------------

	Temp	SSA	PV	(nm)	Si	Size
	(°C)	(m²/g)	(cm ³ /g)			(nm)
2:1	650	315	0.55	7	68	6
2:1	850	130	0.35	20	83	10
2.5:1	650	230	0.48	12	57	10
2.5:1	850	110	0.35	34	87	21
3:1	650	206	0.48	12	48	9
3:1	850	152	0.32	45	78	30

Figure S 8. Characterisation of samples used to understand the thermodynamic evolution of the MgTR reaction, samples include silicon reduced at 650 and 850°C, Silicon reduced at 650 °C washed in HCl acid then heated to 850 °C under argon (650-E-850), and silicon reduced at 650 °C allowed to cool then reheated to 850°C (650-850). (a)(c) N_2 absorption Isotherms, (b)(d) BJH pore size distributions, (e) purity of silicon samples.

Figure S 9, N_2 absorption Isotherms and BJH pore size distributions of silica sources.

Table S 6.SSA, BJH pore volume, purity and crystallite size of silicon reduced at 650 and 850 °C for different silica precursors.

Precursor	Reduction	BET	BJH PV	wt%	Si _{Cry} Size
-----------	-----------	-----	--------	-----	------------------------

	Temperature	SSA	(cm³/g)	Si	(nm)
	(°C)	(m²/g)			
Ppt. silica		156	0.56		
Ppt. silica	650	220	0.63	56.3	9
Ppt. silica	850	108	0.40	60.9	19
Silica Gel		264	0.89		
Silica Gel	650	275	0.73	50.7	6
Silica Gel	850	158	0.48	80.3	13
BIS		301	0.16		
BIS	650	216	0.48	57.3	10
BIS	850	110	0.35	87.0	21
Porous SiO ₂		725	0.09		
Porous SiO ₂	650	205	0.45	41.9	22
Porous SiO ₂	850	90	0.27	79.4	28
Quartz		N	on-porous		
Quartz	650	310	0.36	31.1	17
Quartz	850	76	0.30	85.2	26

Reduced Products

Figure S 10. N_2 absorption Isotherms and BJH pore size distributions of silicon reduced from variety of silica sources at 650 and 850 °C.

Figure S 11. Discharge capacity of porous silicon/silica composites reduced at 650 and 850 $^{\circ}\mathrm{C}$

Figure S 12. Purity of silicon reduced from silica sources at 650 and 850 °C

Anode performance

Figure S 13. Differential capacity plots of the 1st, 5th, 10th, 25th, 50th and 100th cycles for silicon reduced between 550-950 °C

Figure S 14. Columbic efficiencies (a) during the first 10 cycles, (b) for 100 cycles of silicon's reduced at 550-950 °C

Figure S 15. Voltage capacity profiles of the 1st, 10th and 100th cycles for silicon reduced from 550-950 °C

Figure S 16. Capacity vs cycle life of micron sized silicon particles (-325 mesh)

Figure S 17. Steel trough reactor with lid used in this study.