Supporting Information

Trifunctional catalytic activities of trimetallic FeCoNi alloy nanoparticles embedded in carbon shell and for efficient overall water splitting

Mohd. Khalid^{a,*}, Ana M. B. Honorato^b, Germano Tremiliosi Filho^a, Hamilton Varela^a

^aInstitute of Chemistry of São Carlos, University of São Paulo, POBox 780, 13560-970, São Carlos, SP, Brazil.

^bDepartment of Materials Engineering, Federal University of Sao Carlos, Washington Luiz Rd, Km 235, BR1356590, Sao Carlos, SP, Brazil.

*Corresponding author's email: <u>mkansarister@gmail.com</u> (MK), <u>hamiltonvarela@usp.br</u> (HV)

Fig. S1 SEM images of sample 1,2,3&4 before carbonization.

Fig. S2 EDX patterns and weight/atomic percentage of carbonized sample 1,2,3,&4.

Fig. S3 a) XPS survey spectrum and b) XPS spectrum of Co 2p, c) XPS spectrum of Ni 2p, and d) XPS spectrum of C 1s for $Fe_{1.0}Co_{1.1}Ni_{1.4}$ -NC.

The calculated ECSAs of $Fe_{1.0}Co_{2.0}Ni_{5.4}-NC$, $Fe_{1.0}Co_{0.5}Ni_{0.6}-NC$, $Fe_{1.0}Co_{1.1}Ni_{1.4}-NC$, $Fe_{1.0}Co_{4.4}Ni_{6.5}-NC$, and RuO_2 were 0.38, 0.24, 0.16, 0.12, and 0.03 cm², respectively.

Fig. S4. Electrochemical active surface area. a) to d) CV cycles of pyrolyzed samples 1,2,3,&4 respectively, and f) Charging current density differences ($\Delta j = j_a - j_b$) at an overpotential of 0.15 V plotted against scan rates to estimation C_{dl}.

Fig. S5. EOR curves of 1 for $Fe_{1.0}Co_{2.0}Ni_{5.4}$ -NC, 2 for $Fe_{1.0}Co_{0.5}Ni_{0.6}$ -NC, 3 for $Fe_{1.0}Co_{1.1}Ni_{1.4}$ -NC, 4 for $Fe_{1.0}Co_{4.4}Ni_{6.5}$ -NC in 1 M KOH + 1 M C₂H₅OH electrolyte.

Table S1. Comparison of the OER electrocatalytic activities of $Fe_{1.0}Co_{1.1}Ni_{1.4}$ -NC with some lately reported non-noble based electrocatalysts.

Catalysts	Overpotential at 10 mA cm ⁻² (vs. RHE)	Mass loading mg cm ⁻²	Electrolyte	References
Fe _{1.0} Co _{1.1} Ni _{1.4} -NC	270 mV	~ 0.025	1 М КОН	This work
IrO ₂	338 mV	0.21	1 M KOH	S1
RuO ₂	380 mV	0.146	1 M KOH	S2
CoFe@NC/rGO	278 mV	NA	1 M KOH	S3
CoNi(OH) _x	280 mV	0.72	1 M KOH	S4
FeNi@Graphene	280 mV	0.32	1 M NaOH	S5
Ni ₃ FeN-NPs	280 mV	0.20	1 M KOH	S6
NiFe LDH-NS	300 mV	0.07	1 M KOH	S1
NiFe-SW	240 mV	NA	1 M KOH	S7
NiCo _{2.7} (OH)x	350 mV	0.20	1 M KOH	S8
FeCoNi-ATNs/NF FeCoNi-ATNs (H)/NF	290 mV 225 mV	0.016 0.016	1 M KOH 1 M KOH	S9
W _{0.5} Co _{0.4} Fe _{0.1} /NF	310 mV	NA	1 M KOH	S10
Ni ₃ Se ₂ -GC	290 mV	0.217	0.3 M KOH	S11
N-NiMoO ₄ /NiS ₂	283 mV	0.2	1 M KOH	S12

Table S2. Turnover frequency (TOF) values of samples.

	Fe _{1.0} Co _{1.1} Ni _{1.4} -NC	Fe _{1.0} Co _{4.4} Ni _{6.5} -NC	Fe _{1.0} Co _{2.0} Ni _{5.4} -NC	Fe _{1.0} Co _{0.5} Ni _{0.6} -NC	FeNi-NC
TOF@1.53	0.006 s ⁻¹	0.002 s ⁻¹	0.0027 s ⁻¹	0.0059 s ⁻¹	0.0038 s ⁻¹

Table S3. Comparison of the HER electrocatalytic activities of $Fe_{1.0}Co_{1.1}Ni_{1.4}$ -NC with some lately reported non-noble based electrocatalysts

Catalysts	Overpotential at 10 mA cm ⁻² (vs. RHE)	Mass loading mg cm ⁻²	Electrolyte	References
Fe _{1.0} Co _{1.1} Ni _{1.4} -NC	175 mV	~ 0.025	1 М КОН	This work
Co(OH) ₂ /Pt(111)	248 mV	NA	1 M KOH	S13
NiFe LDH/NF	210 mV	NA	1 M KOH	S14
NiFe-MOF	196 mV	NA	1 M KOH	S15
CoP/CC	209 mV	0.92	1 M KOH	S16
NiFeOx/CFP	88 mV	1.6	1 M NaOH	S17
NiCoP/rGO	270 mV	0.15	1 M KOH	S18
CuCo@NC	145 mV	0.182	1 M KOH	S19
NiFeV-LDHs/NF	125 mV	NA	1 M KOH	S20
CoSe/NiFe LDH	260 mV	4	1 M KOH	S21
MoS ₂ /Ni ₂ S ₃	110 mV	9.7	1 M KOH	S22
Ni ₃ FeN-NPs	158 mV	0.2	1 M KOH	S6

Supporting References:

- S1 F. Song, X. Hu, Nat Commun. 2014, 5, 4477.
- S2 T. Sun, J. Wang, C. Qiu, X. Ling, B. Tian, W. Chen, C. Su, Adv. Sci. 2018, 5, 1800036.
- S3 F. Kong, K. Chen, S. Song, D. Xue, Inorg. Chem. Front. 2018, 5, 1962.

S4 S. Li, Y. Wang, S. Peng, L. Zhang, A. M. Al-Enizi, H. Zhang, X. Sun, G. Zheng, *Adv. Energy Mater.* 2016, **6**, 1501661.

S5 X. Cui, P. Ren, D. Deng, J. Deng, X. Bao, Ener. Envir. Sci. 2016, 9, 123.

S6 X. Jia, Y. Zhao, G. Chen, L. Shang, R. Shi, X. Kang, G. I. N. Wterhouse, L.-Z. Wu, C.-H. Tung, T. Zhang, *Adv. Ener. Mater.* 2016, **6**, 1502585.

S7 W. Zhang, Y. Wu, J. Qi, M. Chen, R. Cao, Adv. Energy Mater. 2017, 7, 1602547.

S8 J. Nai, H. Yin, T. You, L. Zheng, J. Zhang, P. Wang, Z. Jin, Y. Tian, J. Liu, Z. Tang, L. Guo, *Adv. Energy Mater.* 2015, **5**, 1401880.

S9 Q. Zhang, N. M. Bedford, J. Pan, X. Lu, R. Amal, Adv. Energy Mater. 2019, 1901312.

S10 Q. Shao, P. Wang, F. Lv, S. Guo, J. Guo, X. Huang, *Angew. Chem. Int. Ed.* 2017, **56**, 45024506.

S11 A. T. Swesi, J. Masud, M. Nath, Energy Environ. Sci. 2016, 9, 1771.

S12 L. An, J. Feng, Y. Zhang, R. Wang, H. Liu, G.-C. Wang, F. Cheng, P. Xi, *Adv. Funct. Mater.* 2019, **29**, 1805298.

S13 R. Subbaraman, D. Tripkovic, K.-C. Chang, D. Strmenik, A. P. Paulikas, P. Hirunsit, M. Chan, J. Greeley, V. Stamenkovic, N. M. Markovi, *Nat. Mater.* 2012, **11**, 550.

S14 J. Luo, J. H. Im, M. T. Mayer, M. Schreier, M. K. Nazeeruddin, N. G. Park, S. D. Tilley, H. J. Fan, M. Grätzel, *Science* 2014, **345**, 1593.

S15 J. Duan, S. Chen, C. Zhao, Nat. Commun. 2017, 8, 15341.

S16 J. Tian, Q. Liu, A. M. Asiri, X. Sun, J. Am. Chem. Soc. 2014, 136, 7587.

S17 H. Wang, H.-W. Lee, Y. Deng, Z. Lu, P.-C. Hsu, Y. Liu, D. Lin, Y. Cui, *Nat. Commun.* 2015, **6**, 7261.

S18 J. Li, M. Yan, X. Zhou, Z.-Q. Huang, Z. Xia, C.-R. Chang, Y. Ma, Y. Qu, *Adv. Funct. Mater.* 2016, **26**, 6785.

S19 M. Kuang, Q. Wang, P. Han, G. Zheng, Adv. Ener. Mater. 2017, 7, 1700193.

S20 K. N. Dinh, P. Zheng, Z. Dai, Y. Zhang, R. Dangol, Y. Zheng, B. Li, Y. Zong, Q. Yan, *Small* 2017, **14**, 1703257.

S21 Y. Hou, M. R. Lohe, J. Zhang, S. Liu, X. Zhuang, X. Feng. *Energy Environ. Sci.* 2016, 9, 478.

S22 J. Zhang, T. Wang, D. Pohl, B. Rellinghaus, R. Dong, S. Liu, X. Zhuang, X. Feng. *Angew. Chem. Int. Ed.* 2016, **128**, 6814.