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Experimental Section

Li metal foil (Shenzhen Kejingstar, 0.4 mm) was used as the anode electrode. The
graphite positive electrode was prepared by mixing of graphite, conductive carbon
black, and poly-vinylidene fluoride (PVDF) in N-methyl-2-pyrrolidone (NMP) with a
weight ratio of 8:1:1. The above mixture was stirring constantly to form uniform
slurry at room temperature, which was then coated onto aluminum current collector
(Shenzhen Kejingstar) and dried in vacuum in an 80 °C oven. The active materials
loading in graphite cathode are 2.0~2.5 mg cm=.

A glass microfiber filter (Whatman, grade 934-AH) was used as the separator.
Lithium hexafluorophosphate (LiPF¢), ethyl methyl carbonate (EMC) and vinylene
carbonate (VC) were purchased from Dodochem. The AgPFq and LiNO; additive
were kindly purchased from Alfa Aesar. The base electrolyte was composed of 4M
LiPFs, EMC and VC (the 3vol% VC additive can improve the uniformity and
flexibility of the interface film on electrode materials surface [1-3]). The 0.03 M
LiNO; and AgPF¢ additive were added as important additives to improve the
electrochemical performance of Li electrode. The effect of LiNO; was discussed in

the reported work. The solubility of additives in the base electrolyte in 15" day at

30°C is shown in the optical image (Fig.S1). The preparation of electrolyte and

fabrication of CR2025-type coin cells were conducted in an argon-filled glove box
(MBraun, Germany) with the oxygen and water level below 0.1 ppm. When
assembling a symmetric cell, Li electrodes were both employed on both sides of the
separator. The electrolyte was composed of base electrolyte with or without additive.
And for the Li-Graphite Dual-ion cells, Li electrode was used as anode, and graphite
electrode was used as cathode. The electrolyte was also composed of base electrolyte
with or without AgPF¢LiNO; hybrid electrolyte additive. And then the
electrochemical performance was performed on a battery test system (LAND

CT2011A).

Characterization and Electrochemical tests



X-ray photoelectron spectroscopy (XPS) was carried out using Thermo
Fisher Scientific K-Alpha. Scanning electron microscope (SEM) images were
collected on a HITACHI S-4800 field emission scanning electron microscope
(operating at 10 kV). The linear sweep voltammogram (LSV) curves of Li"
deposition on the Li anode were obtained in a three-electrode cell using the Li
metal electrodes as the working electrode, counter electrode and reference
electrode with a CHI660D electrochemical station (Chenhua, China) at a scan
rate of 1mV s'!. The area of the working electrode was 2.51 cm?. Galvanostatic
charge—discharge tests were worked on LAND CT2011A battery testing
instrument at room temperature. The electrochemical impedance spectrum
(EIS) experiment test was carried out on a CHI760e electrochemical station
(Chenhua, China). The ac voltage amplitude was 5 mV and the range of

frequency was from 100 kHz to 10 mHz.

Computational methods

Density functional theory (DFT) calculations were carried out using the Vienna Ab
initio Simulation Package (VASP) program. Generalized gradient approximation
(GGA) functional Perdew—Burke-Ernzerhof (PBE) functional of exchange-
correlation and the projector-augmented-wave pseudopotentials were here utilized [4-

8].
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Fig.S1 The solubility of additives in the base electrolyte in 15" day at 30°C
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Fig.S2 XRD pattern of the pure Li foil and the Li foil after plating
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Figure S3 Exchange current densities of Li anodes in base electrolyte with different

additive at 25°C as determined by fitting LSV curves.
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Figure S4 (a) The cycling performance of Li||Li symmetric cells with only AgPFg

additive at current densities of 0.5 mA cm™2.
(b) SEM images of Li anode after plating and stripping for 200 h in the base
electrolyte with only AgPF¢ additives.
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Figure S5 Cycling performance of Li||Li symmetric cells with AgPF¢-LiNO; additive
at current densities of 2.0 mA cm=.



Figure S6 SEM images of Li anode after plating and stripping for 40 h in the baseline electrolyte
(a) and in the base electrolyte with LiNO; additive (b). The SEM images of Li anode after plating
and stripping for 200 h in the base electrolyte with LiNO; additive (c) and with AgPF¢-LiNO;
additive (d).
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Figure S7 EIS of the Li||Li symmetric cell before cycling (a) and after 30 cycles (b) at a current
density of 0.5 mA cm? without or with different additives.
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Table S1 The fitted value of electrochemical impedance spectroscopy (EIS) about the
Li||Li symmetric cell before cycling (a) and after 30 cycles (b) at a current density of
0.5 mA cm? with fixed capacity of 0.5 mAh cm without or with different additives.

Rser (OCV) Rgpi(30™ )
base 38.82 61.73
base+LiNO; 118.5 64.24
baset+AgPFg 79.65 66.9
base+ AgPF¢+ LiNO; 43.93 12

11
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Fig. S8 XPS characterization for the Li anode cycled in electrolyte without and
with LiNOs .
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Figure S9 Long-term test results of the Li-G DIB without or with LiNOj additive or
with AgPF¢ additive at 0.5 C (1 to 10 cycles) and 5C (11 to 1000 cycles).
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Figure S10 SEM images of the Li anode in electrolyte with LiNOj; additive (a) or with
AgPFg¢ - LiINOj; additive (b) after 500 cycles at 5 C.
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Table S2. Performance comparison of this work and reported DIBs.

DIB structure Reversible Capacity | Cycle Estimated energy Reference
capacity retention | number | density

CNFs-Li|LiPFg 92.2 mAh g'! 86.4% 2000 9]
-EMC |Graphite (1000 mA g)
Graphite|LiPF¢-FEC | 60 mAh g'! 67% 50 [10]
EMC-HFIP|Graphite | (50 mA g)
Si-compound|LiBF; | 80 mAh g | 84% 100 54 Wh kg'! [11]
-PC|Graphite (100 mA g
MoO;|LiPFs- 81 mAh g'|90% 200 77 Whkg'! [12]
EC-DMC]| (100 mA g)
Graphite
TiO,|LiPFs-EC 44 mAh g' | 88% 50 36 Wh kg'! [13]
-DMC]|Graphite (100 mA g
Al|LiPF¢-EMC| 100 mAh g | 88% 200 220 Wh kg-1 [14]
Graphite (200 mA g™ (130 W kg-1);

150 Wh kg-1

(1200 W kg-1)
pAl/C|LiPFs-EMC] 104 mAh g'|89.4% 1000 232 Wh kg-1 [15]
Graphite (200 mA g (446 W kg-1);

180 Wh kg-1

(3597 W kg-1)
Li|LiTFSI- 50.1 mAh g! 97% 500 100 Wh kg! [16]
Pyr4FTFSI| (50 mA g
KS6L
Li|LiPFs-EMC | 69 mAh g'|81% 1000 243 Wh kg! [17]
Graphite (400 mA g (486 W kg');

350 Wh kg!

(1750 W kg™
Li|LiPF¢-EMC 80 mAh g'!|88% 1000 374 Whkg! This
-AgPF¢-LiNOjs| (500 mA g!) (748 W kg); work
Graphite 360 Wh kg!

(2250 W kg

Calculation method of specific energy density (see reference [14])
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