Identification of Optimal Active Boron Site for N₂ Reduction

Hui Yin¹, Li-Yong Gan^{1,2*}, and Ping Wang^{1*}

¹School of Materials Science and Engineering, Key Laboratory of Advanced Energy Storage Materials of Guangdong Province, South China University of Technology, Guangzhou, 510641, P.R. China

²Institute for Structure and Function and Department of Physics, Chongqing University, Chongqing, 400030, China

*E-mail: ganly@cqu.edu.cn (L.-Y. Gan) and mspwang@scut.edu.cn (P. Wang).

*Tel: +86 20 3938 0583.

Free Energy Calculations

The associated free energy change (ΔG) of each step was determined according to a computational hydrogen electrode model proposed by Nørskov et al.,¹ and is calculated by taking gas-phase N₂ and H₂ as reference states

$$\Delta G = \Delta E + \Delta ZPE - T\Delta S + \Delta G_{U} + \Delta G_{pH}$$

where ΔE , ΔZPE , and ΔS represent the reaction energy, zero point energy difference and entropy change of each step, respectively. The temperature (T) is set to be 298.15 K. ΔG_U is the effect of an operating bias U, and equals -neU with *n* being the number of electrons involved in the reaction. ΔG_{pH} is the correction of the H⁺ concentration in electrolytes, and was calculated as $\Delta G_{pH} = 0.059 \times pH$. Since the overpotential remains the same with increasing pH value, pH was assumed to be zero.

The entropies and zero-point energy were calculated based on the vibrational frequencies. The entropy is calculated as

$$S(T) = \sum_{i=1}^{3N} \left[-R \ln \left(1 - e^{-\frac{hv_i}{k_B T}} \right) + \frac{N_A hv_i e^{-\frac{hv_i}{k_B T}}}{T - \frac{hv_i}{k_B T}} \right]$$

in which R_{i} , h_{i} , k_{B} , N_{A} , v_{i} , N and T is the universal gas constant, Planck's constant, Boltzmann's constant, Avogadro's number, frequency of the normal mode, number of adsorbed atoms and temperature (298.15 K), respectively. Entropies of the gas-phase N₂ and H₂ were taken from the NIST database. The zero point energy is defined as

$$E_{ZPE} = \frac{1}{2} \sum_{i=1}^{N \text{modes}} h v_i$$

where N_{modes} is the number of vibrational modes. Then, ΔE_{ZPE} and ΔS are the differences in zero point energy and entropy, respectively, between the adsorbed species and gas-phase molecules. The operating bias U_L is the applied potential required to eliminate the energy barrier of the potential-limiting step and is calculated as $-\Delta G_{\text{pls}}/\text{e}$, where ΔG_{pls} is the free energy difference of the potential-limiting step according to the standard hydrogen electrode (SHE).²

The decomposition of N-doped substrate to release NH₃ can be expressed as:

$$B/C_2N - s + 3(H^+ + e^-) \rightarrow B/C_2N - s' + NH_3(g)$$

where B/C_2N -s' is the structure of B/C_2N -s after losing one nitrogen atom. Hence, the required
potential (U_d vs. SHE) to form NH_3 by the decomposition of catalysts can be expressed as:
$U_d = \Delta G_d / 3e$

Distal mechanism			Alternating mechanism				
species	$\Delta G (eV)$ B/C ₂ N-a (2×2)	$\Delta G (eV)$ B/C ₂ N-s (2×2)	species	$\begin{array}{l} \Delta G \ (eV) \\ B/C_2N\text{-a} \\ (2 \times 2) \end{array}$	$\Delta G (eV)$ B/C ₂ N-s (2×2)	$\begin{array}{l} \Delta G \ (eV) \\ B/C_2N\text{-s} \\ (1 \times 1) \end{array}$	
N ₂	0	0	N ₂	0	0	0	
*N ₂ H	-0.77	-0.37	*N ₂ H	-0.77	-0.37	-0.58	
*NNH ₂	-1.41	-0.77	*NHNH	-1.69	-0.57	-0.86	
*NNH ₃	-1.43	-0.48	*NH ₂ NH	-2.43	-1.40	-1.39	
*NH+NH ₃	-2.48	-2.39	*NH ₂ NH ₂	-2.13	-2.05	-2.07	
*NH ₂ +NH ₃	-4.96	-2.88	*NH ₂ +NH ₃	-4.96	-2.88	-2.89	
*NH ₃ +NH ₃	-4.83	-3.96	*NH ₃ +NH ₃	-4.83	-3.96	-3.91	

Table S1. The free energies of each step via alternating and distal mechanisms on B/C₂N-a and B/C₂N-s in a 2×2 supercell and those on B/C₂N-s in a 1×1 supercell.

Table S2. B-C bond length in NRR via the alternating pathway.

Adsorbed species	*N ₂	*N ₂ H	*NHNH	*NH ₂ NH	*NH ₂ NH ₂	*NH ₂	*NH ₃
B-C bond length	1.49	1.51	1.50	1.53	1.50	1.54	1.50

Scheme S1. Schematic diagrams of the orbital interaction for N_2 adsorption on (a) $B/C_2N\mbox{-a}$ and (b) $B/C_2N\mbox{-s}.$

Scheme S2. Schematic illustration of possible reaction paths for N_2 reduction to NH_3 .

Scheme S3. Schematic diagrams of the orbital interaction for H bonding with sp^3 - and sp^2 -hybridized B.

$$\Delta E = \frac{|H_{ij}|^2}{E_i^0 - E_j^0}$$
Equation S1

where E_i^0 is an unperturbed orbital energy before a perturbation or interaction is turned on. H_{ij} represents the matrix element of the perturbation.³⁻⁴

Density of states (1/eV)

Figure S1. The pDOS of B atoms in (a) B/C₂N-a and (b) B/C₂N-s.

Figure S2. The geometry structure (upper panel) and differential charge density (lower pannel) of (a) N_2 adsorption in side-on mode and (b) two H atoms co-adsorption on B/C₂N-a.

Figure S3. (a) Activation pictures of the N \equiv N bond after N₂ adsorption on (a) B/C₂N-a and (b) B/C₂N-s resolved by pCOHP.

Figure S4 Free energy landscape of N_2 reduction at 0 V and the applied potential on (a, c and e) B/C_2N -a and (b, d and f) B/C_2N -s.

Figure S5. Initial structures of N_2 adsorption on B/C_2N -s with (a) a H atom, (c) a H₃O molecule and (e) a H₃O and several H₂O molecules in the vicinity. (b), (d) and (f) are the corresponding structure after optimization.

Figure S6. Free energy landscape of N_2 reduction at 0 V on (a) B/C_2N -a and (b) B/C_2N -s through distal pathway where the first NH₃ is formed by N-N bond cleavage of NNH₃.

Figure S7. Bader charge of each entity in NRR process via (a) distal and (b) alternating mechanism on B/C_2N -s.

Figure S8. The geometries of N_2 and H coadsorption on B/C₂N-a (a) before and (b) after structural optimization.

Figure S9. Free energy diagram for HER at different sites on B/C₂N-s.

Figure S10. The optimized structures of (a) B/C_3N_4 -a, (b) B/Gz-s, (c) B/Ga-a, (d) hBNz, (e) B/hBNz-a and (f) B/hBNa-a. The active B sites are marked by red circles.

Figure S11. The pDOS of B in (a) B/C_2N -s, (b) B/C_2N -a, (c) B/C_3N_4 -a, (d) B/Gz-s, (e) B/Ga-a, (f) hBNz, (g) B/hBNz-a and (h) B/hBNa-a.

Figure S12. Free energy of H (blue) and N_2 (red) adsorption on B/C₂N-a, B/C₂N-s, B/C₃N₄-a, B/Gz-s, B/Ga-a, hBNz, B/hBNz-a and B/hBNa-a.

Figure S13. The optimized structures of N_2 adsorption on (a) B/C_3N_4 -a, (b) B/Gz-s, (c) B/Ga-a, (d) hBNz, (e) B/hBNz-a and (f) B/hBNa-a.

Figure S14. The optimized structure of H adsorption on (a) B/C_3N_4 -a, (b) B/Gz-s, (c) B/Ga-a, (d) hBNz, (e) B/hBNz-a and (f) B/hBNa-a.

Figure S15. Bader charge of H adsorption on B/C_2N -s, B/C_2N -a, B/C_3N_4 -a, B/Gz-s, B/Ga-a, hBNz, B/hBNz-a and B/hBNa-a.

Figure S16. The pPDOS of B and H atom in (a) B/C_3N_4 -a, (b) B/Gz-s, (c) B/Ga-a, (d) hBNz, (e) B/hBNz-a and (f) B/hBNa-a before and after H adsorption.

.

Figure S17. The minimum energy path for B hopping out of the trapping center in B/C_2N -s.

Figure S18. Variations of energy (orange) and temperature (olive) against the time in *ab initio* molecular dynamics simulations for B/C_2N -s. Insert shows the structure of B/C_2N -s after 10-ps simulation. The temperature is set to be 800 K and the time step is 2 fs.

Figure S19 The decomposition potentials at three nonequivalent N sites in B/C_2N -s.

Figure S20. Comparison of (a) pDOS and (b) optical adsorption spectra for pristine C_2N and B/C_2N -s.

Reaction Coordination

Figure S21. (a) The adsorption free energy of N_2 and H adsorption on B/C₂N-s in a 2 × 2 and 1 × 1 supercell. (b) The free energy diagram of NRR on B/C₂N-s in a 1 × 1 supercell, using Perdew-Burke-Ernzerh (PBE) and revised Perdew-Burke-Ernzerhof (RPBE) functionals, respectively.

Figure S22. Relative energies of C_2N with two (a) adjcent and (b) diagonal N atoms in one cave and (c) two N atoms in two caves substituted by two B atoms.

References

(1) Skúlason, E.; Bligaard, T.; Gudmundsdottir, S.; Studt, F.; Rossmeisl, J.; Abild-Pedersen, F.; Vegge, T.; Jonsson, H.; Nørskov, J. K. A Theoretical Evaluation of Possible Transition Metal Electro-Catalysts for N₂ Reduction. *Phys. Chem. Chem. Phys.* **2012**, *14*, 1235-1245.

(2) Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jonsson, H. Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode. *J. Phys. Chem. B* **2004**, *108*, 17886-17892.

(3) Albright, T. A.; Burdett, J. K.; Whangbo, M.-H., *Orbital Interactions in Chemistry*; John Wiley & Sons: 2013.

(4) Hoffman, R., *Solids and Surfaces: A Chemist's View of Bonding in Extended Structures*; VCH: Weinheim and New York, 1988.