Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2020

Electronic Supplementary Information (ESI)

New Structure Family of Oxide-ion Conductors Based on BaGdInO₄

Hiroshi Yaguchi,¹ Kotaro Fujii,¹ Masatomo Yashima^{1,*}

¹ Department of Chemistry, School of Science, Tokyo Institute of

Technology, 2-12-1-W4-17, O-okayama, Meguro-ku, Tokyo 152-8551,

Japan

Crystal structure of BaGdInO₄, BaNdInO₄ and SrYbInO₄

Fig. S1 Crystal structure of BaGdInO₄ viewed (a) along the *c* axis ($-0.1 \le x \le 1.1$; $0.0 \le y \le 2.0$; $0.25 \le z \le 0.75$) and (b) along the *b* axis ($-0.2 \le x \le 1.2$; $0.0 \le y \le 1.0$; $-0.25 \le z \le 1.25$). Red ellipsoids, green and orange polyhedra stand for oxygen atoms, InO_n (n = 5 and 6) and GdO₇, respectively. Crystal structure of BaNdInO₄ (= BaRInO₄; R = Nd) viewed (c) along the *a* axis ($0.3 \le x \le 0.6$; $0.0 \le y \le 2.0$; $0.0 \le z \le 2.0$) and (d) along the *b* axis ($-0.2 \le x \le 1.6$; $0.0 \le y \le 1.0$; $0.0 \le z \le 2.0$). Red ellipsoids, green and orange polyhedra stand for oxygen atoms, InO₆ octahedron and NdO₇ polyhedron, respectively. Crystal structure of SrYbInO₄ (e) along the *c* axis ($-0.2 \le x \le 1.2$; $0.0 \le y \le 3.2$; $-0.2 \le z \le 0.2$) and (f) along the *b* axis ($-0.2 \le x \le 1.2$; $0.0 \le y \le 1.0$; $0.0 \le y \le 1.2$; $0.0 \le y \le 1.0$; $-0.2 \le x \le 1.2$; $0.2 \le 1.2$; $0.2 \le 1.2$; $0.2 \le 1.2$; 0.

Crystal structure analysis of SCXRD data of BaGdInO₄

In preliminary analyses of SCXRD data of BaGdInO₄, the occupancy factors of *X* atom at the *s* site g(X; s) were refined as follows. g(Ba; Ba1) = 0.998(10), g(Ba; Ba2) = 1.000(10), g(Gd; Gd1) = 0.991(10), g(Gd; Gd2) = 0.988(10), g(In; In1) = 1.005(10), g(In; In2) = 0.997(10), g(O; O1) = 1.045(18), g(O; O2) = 1.039(18), g(O; O3) = 1.031(14), g(O; O4) = 1.030(14), g(O; O5) = 1.015(15). All the occupancy factors agreed to unity within three times of estimated standard deviations. Therefore, all the occupancy factors were fixed to unity in the final refinement. Results of the final structure refinement of the SCXRD data of BaGdInO₄ are listed in Tables 1 and S1.

Site	U_{11} (Å ²)	U_{22} (Å ²)	$U_{22}(Å^2)$	$U_{12}(Å^2)$	$U_{12}(Å^2)$	$U_{22}(Å^2)$
label	• 11 ()	- 22 ()	- 33 ()	- 12 ()	- 13 ()	- 25 ()
Ba1	0.00785(12)	0.00722(13)	0.00831(13)	0	0.00127(10)	0
Ba2	0.01390(14)	0.00892(14)	0.00903(14)	0	0.00086(12)	0
Gd1	0.00498(10)	0.00433(10)	0.00510(10)	0	0.00060(8)	0
Gd2	0.00626(10)	0.00456(10)	0.00480(10)	0	0.00003(8)	0
In1	0.00373(13)	0.00382(13)	0.00389(14)	0	-0.00031(11)	0
In2	0.00441(13)	0.00348(14)	0.00460(15)	0	0.00045(11)	0
01	0.0084(16)	0.0110(18)	0.0059(16)	0	0.0013(14)	0
02	0.0067(16)	0.024(2)	0.0083(18)	0	-0.0049(14)	0
03	0.0091(12)	0.0089(13)	0.0118(13)	0.0032(10)	-0.0026(11)	0.0005(9)
O4	0.0102(12)	0.0088(13)	0.0103(13)	0.0035(10)	0.0025(10)	-0.0014(10)
05	0.0140(13)	0.0075(12)	0.0136(14)	-0.0015(10)	0.0028(12)	0.0062(10)

Table S1 Refined anisotropic atomic displacement parameters of BaGdInO₄ obtained by structure analyses of SCXRD data.

Rietveld analysis of synchrotron X-ray powder diffraction data of BaGdInO₄ and BaGd_{0.9}Ca_{0.1}InO_{3.95}

Fig. S2 Rietveld patterns for synchrotron X-ray powder diffraction (SXRPD) data of (a) $BaGdInO_4$ and (b) $BaGd_{0.9}Ca_{0.1}InO_{3.95}$, showing the experimental data (red + marks), calculated intensities (blue solid line) and difference pattern (blue solid line). Black tick marks in panels (a) and (b) denote calculated Bragg peak positions of orthorhombic $BaGdInO_4$ and $BaGd_{0.9}Ca_{0.1}InO_{3.95}$, respectively.

Chemical formula	$BaGdInO_4$	$BaGd_{0.9}Ca_{0.1}InO_{3.95}$				
Formula weight	946.82	923.39				
Temperature / °C	20	20				
Wavelength / Å	0.4994152(11) Å					
Crystal system	Ort	horhombic				
Space group		Pnma				
<i>a</i> / Å	13.78294(6)	13.79264(9)				
<i>b</i> / Å	5.88350(3)	5.87779(4)				
<i>c</i> / Å	10.62552(5)	10.62782(7)				
V / Å	861.644(12)	861.600 (16)				
$R_{ m wp}$ *	0.060	0.059				
$R_{ m B}$ *	0.023	0.031				
R_F^*	0.013	0.015				

|--|

^{*a*}Crystallographic data of BaGdInO₄ and BaGd_{0.9}Ca_{0.1}InO_{3.95} were obtained by the Rietveld analyses of the synchrotron X-ray powder diffraction data taken by the Debye-Scherrer camera with the imaging plate installed at the BL-19B2 beam line of SPring-8.

 R_{wp} is the weighted profile reliability factor, and R_{B} and R_{F} are the reliability factors based on Bragg intensity and structure factor, respectively.

Site label	x	у	Ζ	$U_{\rm iso}$ (Å ²)*
Ba1	0.21432(7)	0.25	0.66662 (9)	0.0057(2)
Ba2	0.09056(7)	0.75	0.89080 (8)	0.0091(2)
Gd1	0.08287(5)	0.75	0.51837 (6)	0.0038(2)
Gd2	0.14334(5)	0.25	0.31182 (6)	0.0038(2)
Inl	0.30726(8)	0.75	0.52165 (9)	0.0028(2)
In2	0.02962(8)	0.75	0.22013 (9)	0.0041(2)
01	0.2060(6)	0.75	0.6863 (8)	0.0102(8)
02	-0.0987(7)	0.75	0.1334 (7)	$= U_{iso}(O1)$
O3	0.2099(4)	-0.0027(10)	0.4464 (5)	$= U_{iso}(O1)$
O4	0.0096(4)	0.4973(12)	0.3651 (5)	$= U_{iso}(O1)$
05	0.1132(5)	0.4942(12)	0.1303 (5)	$= U_{iso}(O1)$

Table S3 Refined crystallographic parameters and reliability factors in Rietveld analysis of synchrotron X-ray diffraction data of BaGdInO₄ measured at 26.7 °C.

 $*U_{iso}$: Isotropic atomic displacement parameter.

Table S4 Refined crystallographic parameters and reliability factors in Rietveld analysis of synchrotron X-ray diffraction data of BaGd_{0.9}Ca_{0.1}InO_{3.95} measured at 26.7 °C.

Site label X	atom Y	$g(Y;X)^*$	x	у	Z	U _{iso} (Å ²) ****	
Ba1	Ba	1	0.21421(9)	0.25	0.66733(11)	0.0089(3)	
Ba2	Ba	1	0.09054(10)	0.75	0.89107(11)	0.0131(3)	
Cd Cal	Gd	0.9	0.08220(8)	0.75	0.51207(2)	0.0022(2)	
Ou,Cal	Ca	0.1	0.08230(8)	0.75	0.51607(8)	0.0033(2)	
Gd,Ca2	Gd	0.9	0 14267(7)	0.25	0.21157(0)	0.0024(2)	
	Ca	0.1	0.14207(7)	0.23	0.51157(9)		
In1	In	1	0.30659(10)	0.75	0.52145(12)	0.0045(3)	
In2	In	1	0.02973(10)	0.75	0.22054(12)	0.0057(3)	
01	Ο	0.9875	0.2075(8)	0.75	0.6867(10)	0.0113(10)	
02	Ο	0.9875	-0.0974(9)	0.75	0.1331(8)	$= U_{iso}(O1)$	
03	Ο	0.9875	0.2081(5)	0.0014(12)	0.4478(6)	$= U_{iso}(O1)$	
O4	0	0.9875	0.0123(5)	0.4915(16)	0.3682(6)	$= U_{iso}(O1)$	
05	0	0.9875	0.1128(6)	0.4909(16)	0.1357(6)	$= U_{iso}(O1)$	

*Occupancy factor of atom Y at the X site, $**U_{iso}$: Isotropic atomic displacement parameter.

DFT structure optimization of BaGdInO₄

Table S5 Crystal symmetry, space group, lattice and positional parameters of the optimized structure of $BaGdInO_4$ obtained by DFT calculations and difference between the parameters optimized by DFT calculation and those refined by the SCXRD analyses (Table 1).

Crystal symmetry: orthorhombic, Space group: Pnma

(a) Opt	imized lattice parameters	
	Optimized lattice parameter	Difference / %
<i>a /</i> Å	13.958	1.01
<i>b /</i> Å	5.927	1.01
<i>c</i> / Å	10.728	1.01

(b) Optimize	ed atomic co	ordinates						
	Atomic coo	ordinates		Difference / %				
Site label	x	у	Z	Δx	Δy	Δz		
Bal	0.2168	0.25	0.6651	-0.21	0	0.18		
Ba2	0.9083	0.25	0.3128	0.13	0	0.78		
Gd1	0.9179	0.25	0.4834	-0.07	0	-0.15		
Gd2	0.1423	0.25	0.3128	0.11	0	-0.10		
In1	0.6945	0.25	0.4776	-0.17	0	0.04		
In2	0.9709	0.25	0.7792	-0.07	0	0.08		
01	0.7943	0.25	0.309	-0.06	0	0.21		
O2	0.1032	0.25	0.8645	-0.24	0	0.25		
O3	0.2067	0.9987	0.4466	0.25	0.38	-0.15		
O4	0.0095	0.5002	0.3664	-0.15	0.35	-0.18		
05	0.112	0.4974	0.1305	-0.04	0.19	-0.19		

Lattice parameters *a*, *b*, *c* and lattice volume of BaGd_{0.9} $A_{0.1}$ InO_{3.95} (A = Mg, Ca, and Sr)

Fig. S3 Lattice parameters (a) a, (b) b, (c) c and (d) lattice volume V of BaGd_{0.9} $A_{0.1}$ InO_{3.95} (A = Mg, Ca, Sr) as a function of ionic radius of A^{2+} cation. Here, the ionic radii of A^{2+} for the coordination number of seven after Shannon¹ were used.

Electrical, thermal and optical properties of BaGd_{0.9}Ca_{0.1}InO_{3.95} and BaGdInO₄

Memo to explain the oxygen partial pressure dependence of total electrical conductivities in Fig. 5.

Total electrical conductivities σ_{total} decreased with decreasing oxygen partial pressure $P(O_2)$ from 0.2 to 4.9×10^{-4} atm (regions [A] in Fig. 5) for BaGdInO₄ and from 0.2 to 3.7×10^{-3} atm (region [D] in Fig. 5) for BaGd_{0.9}Ca_{0.1}InO_{3.95}. The slopes of log(σ_{total}) versus log($P(O_2)$) of BaGdInO₄ and BaGd_{0.9}Ca_{0.1}InO_{3.95} in the regions [A] and [D] were 0.15(1) and 0.28(3), respectively, which suggests p-type conduction. σ_{total} of BaGdInO₄ increased with decreasing $P(O_2)$ from 1.5×10^{-20} to 1.3×10^{-23} atm (region [C] in Fig. 5). The slope of region [C] was 0.228(6), which suggests n-type conduction in the region [C].

Fig. S4 Tauc plots for the direct band gap of BaGdInO₄ (blue solid line) and BaGd_{0.9}Ca_{0.1}InO_{3.95} (red solid line). The band structure obtained by the DFT calculations of BaGdInO₄ (Fig. S5) suggested that direct band gap.

Fig. S5 Band structure of BaGdInO₄ based on DFT calculations, which indicates the direct band gap of 2.47 eV.

Fig. S6 Oxide-ion conductivity σ_{ion} of BaGd_{0.9}Ca_{0.1}InO_{3.95} in dry and wet ($P(H_2O) = 2.3 \times 10^{-2}$ atm) N₂ at 709 °C. σ_{ion} was measured at $P(O_2) = 1.69 \times 10^{-4} \sim 2.70 \times 10^{-4}$ atm for BaGd_{0.9}Ca_{0.1}InO_{3.95}. The σ_{ion} in Fig. S6 was not corrected using the Bruggeman approximation.

Fig. S7 Results of the thermogravimetric (TG) analysis of BaGdInO₄ in (a) first, (b) second and (c) third heating and cooling cycles. TG data in the first cycle for BaGdInO₄ showed 1.6 wt% weight loss, which was mainly attributable to the desorption of absorbed species such as water.

Fig. S8 Results of the thermogravimetric (TG) analysis of $BaGd_{0.9}Ca_{0.1}InO_{3.95}$ in (a) first, (b) second and (c) third heating and cooling cycles. TG data in the first cycle for $BaGd_{0.9}Ca_{0.1}InO_{3.95}$ showed 1.2 wt% weight loss, which was mainly attributable to the desorption of absorbed species such as water.

AC impedance spectra of BaGd_{0.9}Ca_{0.1}InO_{3.95}

The electrical conductivities of BaGd_{0.9}Ca_{0.1}InO_{3.95} were measured from 400 to 700 °C by AC impedance spectroscopy. Fig. S9 shows the impedance spectra of BaGd_{0.9}Ca_{0.1}InO_{3.95}. The equivalent circuit used to model the impedance data is shown in Fig. S11. The equivalent circuit analyses gave the capacitance values of $C_b = 9 \times 10^{-12}$ F cm⁻¹ and $C_{gb} = 1 \times 10^{-10}$ F cm⁻¹ in the whole temperature range (Fig. S9). Here the subscripts b and gb denote the bulk and grain boundary, respectively. Fig. S10 shows the temperature dependence of the bulk conductivity σ_b and grain-boundary conductivity σ_{gb} of BaGd_{0.9}Ca_{0.1}InO_{3.95} increased with an increase in temperature. The σ_b of BaGd_{0.9}Ca_{0.1}InO_{3.95} was higher than that of the ion conductivity (σ_{ion}) by DC 4-probe method. The σ_{ion} of BaGd_{0.9}Ca_{0.1}InO_{3.95} was higher than that of the formula of the temperature temperatur

Fig. S9 Complex impedance plane plots of BaGd_{0.9}Ca_{0.1}InO_{3.95} recorded in flowing N₂ gas at (a) 700 °C, (b) 600 °C, (c) 500 °C and (d) 400 °C. The red line and black circles denote the fit to the data and experimental data, respectively.

Fig. S10 Arrhenius plots of the bulk conductivity (red closed circles and red solid line, σ_b) and grain-boundary conductivity (black closed triangles and black solid line, σ_{gb}) of BaGd_{0.9}Ca_{0.1}InO_{3.95} in flowing dry N₂ gas ($P(O_2) = 10^{-4}$ atm) in the electrolyte domain. The σ_b and σ_{gb} values were not corrected by the Bruggeman approximation. The activation energy for σ_b of BaGd_{0.9}Ca_{0.1}InO_{3.95} was 1.03(4) eV.

Fig. S11 Equivalent circuit used to fit the impedance spectroscopy data. *R* denotes a resistor and CPE stands for a constant phase element, the subscripts b and gb stand for bulk and grain boundary, respectively.

Fig. S12 Arrhenius plots of oxide-ion conductivities σ_{ion} of BaGdInO₄, BaNdInO₄ (Ref. 2) and SrYbInO₄ (Ref. 3) and total electrical conductivities σ_{total} of BaErInO₄, BaYInO₄ and BaSmInO₄ (Ref. 4). The σ_{ion} of BaGdInO₄ and BaNdInO₄ were measured in reduced atmospheres. The σ_{ion} of SrYbInO₄ and σ_{total} of BaErInO₄, BaYInO₄ and BaSmInO₄ (Ref. 4). The σ_{ion} and BaSmInO₄ were measured in static air. The σ_{ion} and σ_{total} values were not corrected by the Bruggeman approximation.

Single-crystal X-ray diffraction analysis of BaGd_{0.9}Ca_{0.1}InO_{3.95}

To determine the position of the Ca cation, twenty-one structure models (Model 1, Model 2, \cdots , Model 21) were investigated in preliminary structure refinements using SCXRD data (Table S6). The Model 19 where the Ca cation exists at Gd1 and Gd2 sites, g(Ca; Gd1) = 0.1, g(Gd; Gd1) = 0.9, g(Ca; Gd2) = 0.1 and g(Gd; Gd2) = 0.9, gave the best (lowest) reliability (*R*) factors in the SCXRD analyses. Here the g(X; s) stands for the occupancy factor of *X* atom at the *s* site. Six structure models (Model A, Model B, \cdots , Model F) were also examined to investigate the positions of the oxygen vacancies in other preliminary structure refinements using the SCXRD data (Table S7). All the *R* factors for the six models almost equal. In the final refinement, we used the model F where all the occupancy factors equal to 0.9875.

			model									
	Site	Atom	1	2	3	4	5	6	7	8	9	10
	Ro1	Ba	0.9	0.9	0.9	0.8	0.8	0.8	1	1	1	1
	Dal	Ca	0.1	0.1	0.1	0.2	0.2	0.2	0	0	0	0
	Ba)	Ba	0.9	0.9	0.9	1	1	1	0.8	0.8	0.8	1
	Daz	Ca	0.1	0.1	0.1	0	0	0	0.2	0.2	0.2	0
		Gd	0.9	0.8	1	0.9	0.8	1	0.9	0.8	1	0.9
	Gd Cal	Ba	0.1	0.2	0	0.1	0.2	0	0.1	0.2	0	0
	Uu,Cal	In	0	0	0	0	0	0	0	0	0	0.1
Occupancy		Ca	0	0	0	0	0	0	0	0	0	0
factors		Gd	0.9	1	0.8	0.9	1	0.8	0.9	1	0.8	0.9
	$C_{1}C_{2}$	Ba	0.1	0	0.2	0.1	0	0.2	0.1	0	0.2	0
	Gu,Ca2	In	0	0	0	0	0	0	0	0	0	0.1
		Ca	0	0	0	0	0	0	0	0	0	0
	Ter 1	In	1	1	1	1	1	1	1	1	1	0.9
	1111	Ca	0	0	0	0	0	0	0	0	0	0.1
	I)	In	1	1	1	1	1	1	1	1	1	0.9
	1112	Ca	0	0	0	0	0	0	0	0	0	0.1
		wR ₂ %	6.81	7.10	6.96	9.62	8.37	8.90	8.26	8.40	8.43	7.22
R factors		R_1 %(ob	2.84	2.88	2.86	3.47	3.32	3.34	3.27	3.32	3.30	2.88
		GoF	1.102	1.09	1.071	1.113	1.073	1.093	1.143	1.141	1.145	1.074

Table S6 Results of the SCXRD analyses of $BaGd_{0.9}Ca_{0.1}InO_{3.95}$ based on the twenty-one structure models where the occupancy factors of cations are different from each other.^{*a*}

Table S6 (continued)

Table S6 (co	Table S6 (continued)							model					
	Site	Atom	11	12	13	14	15	16	17	18	19	20	21
	De1	Ba	1	1	1	1	1	1	1	1	1	1	1
	Bal	Ca	0	0	0	0	0	0	0	0	0	0	0
	$\mathbf{D}_{\mathbf{a}}\mathbf{i}$	Ba	1	1	1	1	1	1	1	1	1	1	1
	Daz	Ca	0	0	0	0	0	0	0	0	0	0	0
		Gd	0.8	1	0.9	0.8	1	0.9	0.8	1	0.9	0.8	1
	Cd Cal	Ba	0	0	0	0	0	0	0	0	0	0	0
	Gu,Cal	In	0.2	0	0.1	0.2	0	0.1	0.2	0	0	0	0
Occupancy		Ca	0	0	0	0	0	0	0	0	0.1	0.2	0
factors		Gd	1	0.8	0.9	1	0.8	0.9	1	0.8	0.9	1	0.8
	CdCa	Ba	0	0	0	0	0	0	0	0	0	0	0
	Ou,Ca2	In	0	0.2	0.1	0	0.2	0.1	0	0.2	0	0	0
		Ca	0	0	0	0	0	0	0	0	0.1	0.1	0.2
	In1	In	0.9	0.9	0.8	0.8	0.8	1	1	1	1	1	1
	1111	Ca	0.1	0.1	0.2	0.2	0.2	0	0	0	0	0	0
	In?	In	0.9	0.9	1	1	1	0.8	0.8	0.8	1	1	1
	1112	Ca	0.1	0.1	0	0	0	0.2	0.2	0.2	0	0	0
R factors		$wR_2\%$	7.59	7.63	8.56	8.63	8.99	8.24	8.55	8.57	4.98	8.10	9.58
		R_1 %(ob	3.00	2.96	3.32	3.36	3.41	3.16	3.26	3.27	2.36	3.26	3.38
		GoF	1.074	1.070	1.092	1.114	1.085	1.081	1.087	1.088	1.087	1.101	1.077

Table S7 Results of the SCXRD analyses of $BaGd_{0.9}Ca_{0.1}InO_{3.95}$ based on the six structure models where the occupancy factors of oxygen atom are different from each other.

	Model							
	Site	А	В	С	D	Е	F	
	01	0.95	1	1	1	1	0.9875	
Occupancy factors	O2	1	0.95	1	1	1	0.9875	
	O3	1	1	0.95	1	1	0.9875	
	O4	1	1	1	0.95	1	0.9875	
	05	1	1	1	1	0.95	0.9875	
R factors	wR ₂ %	5.04	5.00	5.00	5.02	5.00	4.98	
	$R_1\%$	2.37	2.37	2.38	2.37	2.37	2.37	
	GoF	1.045	1.034	1.026	1.027	1.031	1.026	

Table S8 Refined anisotropic atomic displacement parameters obtained by structure analyses of single-crystal X-ray

Site	$U_{11}({ m \AA}^2)$	$U_{22}({ m \AA}^2)$	$U_{33}({ m \AA}^2)$	$U_{12}({ m \AA}^2)$	$U_{13}({ m \AA}^2)$	$U_{23}({ m \AA}^3)$
Ba1	0.0104(2)	0.0114(2)	0.0130(2)	0	0.00192(18)	0
Ba2	0.0211(3)	0.0118(3)	0.0132(2)	0	-0.0010(2)	0
Gd,Ca1	0.00612(17)	0.00524(19)	0.00583(18)	0	0.00070(14)	0
Gd,Ca2	0.00714(17)	0.00452(18)	0.00472(18)	0	-0.00012(15)	0
In1	0.0054(2)	0.0058(3)	0.0053(2)	0	-0.00048(19)	0
In2	0.0068(2)	0.0059(3)	0.0060(2)	0	0.00055(19)	0
01	0.014(3)	0.013(3)	0.005(3)	0	0.001(2)	0
O2	0.009(3)	0.032(4)	0.009(3)	0	-0.006 (2)	0
O3	0.0096(19)	0.014(2)	0.016(2)	0.008 (2)	-0.0040(18)	0.0020(16)
O4	0.015(2)	0.011(2)	0.0065(19)	0.0010(17)	0.0018(17)	-0.0009(17)
05	0.015(2)	0.013(2)	0.009 (2)	-0.0006(17)	0.0021(18)	0.0061(17)

diffraction data of BaGd_{0.9}Ca_{0.1}InO_{3.95}.

Fig. S13 Refined crystal structure of BaGd_{0.9}Ca_{0.1}InO_{3.9} viewed (a) along the *b* axis ($-0.2 \le x \le 1.2$; $0.0 \le y \le 1.0$; $-0.25 \le z \le 1.25$) and (b) along the *c* axis ($-0.1 \le x \le 1.1$; $0.0 \le y \le 2.0$; $0.25 \le z \le 0.75$). The red solid lines represent the unit cell. Red, purple and light blue ellipsoids denote the oxygen, Ba1 and Ba2 atoms, respectively, where *Xn* denotes the *X* atom at the *Xn* site listed in Table 2. Blue, green, orange and pink polyhedra stand for In1O₆ octahedron, In2O₅ square pyramid, (Gd,Ca1)O₇ and (Gd,Ca2)O₇, respectively. Thermal ellipsoids are drawn at the 99% probability level. Yellowish green circle denotes In₄O₁₈ four-membered ring. Light blue lines stand for a (Gd_{0.9}Ca_{0.1})₄O₂₀ unit.

Fig. S14 Coordination environments of (a) Ba1, (b) Ba2, (c) Gd,Ca1, (d) Gd,Ca2, (e) In1 and (f) In2 cations. Red, purple, light blue, orange, pink, blue and green ellipsoids stand for oxygen, Ba1, Ba2, Gd,Ca1, Gd,Ca2, In1 and In2 atoms, respectively, where *Xn* denotes the *X* atom at the *Xn* site listed in Table 2. Thermal ellipsoids are drawn at the 99% probability level.

Crystal structure and bond valence-based energy (BVE) landscapes of BaGdInO₄, BaNdInO₄ and SrYbInO₄

Fig S15 Bond valence-based energy (BVE) landscapes for an oxide ion with blue isosurfaces at 0.53 eV and crystal structure of BaGdInO₄ viewed (a) along the *c* axis ($-0.1 \le x \le 1.1$; $0.0 \le y \le 2.0$; $0.25 \le z \le 0.75$) and (b) along the *b* axis ($-0.2 \le x \le 1.2$; $0.0 \le y \le 1.0$; $-0.25 \le z \le 1.25$) where the crystallographic data obtained by the present SCXRD analysis were used. Red ellipsoids, green and orange polyhedra stand for oxygen atoms, InO_n (n = 5 and 6) and GdO₇, respectively. BVE landscapes for an oxide ion with blue isosurfaces at 1.31 eV and crystal structure of BaNdInO₄ (= BaRInO₄; R = Nd) viewed (c) along the *a* axis ($0.3 \le x \le 0.6$; $0.0 \le y \le 2.0$; $0.0 \le z \le 2.0$) and (d) along the *b* axis ($-0.2 \le x \le 1.6$; $0.0 \le y \le 1.0$; $0.0 \le z \le 2.0$) where the crystallographic data in Ref. 2 was used. Red ellipsoids, green and orange polyhedra stand for oxygen atoms, InO₆ and NdO₇, respectively. BVE landscapes for an oxide ion with blue isosurfaces for an oxide ion with blue isosurfaces for an oxide ion with blue isosurfaces at 0.58 eV and crystal structure of SrYbInO₄ (e) along the *c* axis ($-0.2 \le x \le 1.2$; $0.0 \le y \le 3.2$; $-0.2 \le z \le 0.2$) and (f) along the *b* axis ($-0.2 \le x \le 1.2$; $0.0 \le y \le 1.0$; $-0.2 \le z \le 1.2$) where the crystallographic data in Ref. 3 was used. Red ellipsoid and orange polyhedron stand for oxygen atoms and (Yb,In)O₆, respectively. Thermal ellipsoids are drawn at the 99% probability level. Pink solid lines denote the unit cells. Ba and Sr atoms are omitted in panels a-d and e, f, respectively, for simplicity.

Fig. S16 (a) Bond-valence-based energy (BVE) landscape for an oxide ion with blue isosurfaces at 0.46 eV and crystal structure of Gd_2O_3 projected on the *ab* plane ($0.0 \le x \le 1.0, 0.0 \le y \le 1.0, 0.0 \le z \le 0.45$).

BVE landscapes for an oxide ion with blue isosurfaces at 0.46 eV around a Gd1O₆ polyhedron (b) and a Gd2O₆ polyhedron (c). Red, orange and pink spheres stand for oxygen, Gd1, Gd2 atoms, respectively. Orange and pink polyhedra stand for Gd1O₇ and Gd2O₇ polyhedra, respectively. Lattice parameter of Gd₂O₃ was a = 10.824(7) Å (Ref. 5). Atomic coordinates of Gd1, Gd2, O atoms are (0.25, 0.25, 0.25), (-0.032430, 0, 0.25) and (0.391, 0.1518, 0.3755), respectively.⁵ Black solid lines denote the unit cells.

Fig. S17 Arrhenius plots of oxide-ion conductivities σ_{ion} of BaGd_{0.9}Ca_{0.1}InO_{3.95}, BaGdInO₄, Gd_{1.98}Ca_{0.02}O_{2.99} (Ref. 6) and Gd₂O₃. Fig. S18 shown the σ_{iotal} of Gd₂O₃ was constant independent of *P*(O₂). Therefore, it was suggested that the oxide-ion conduction is dominant in the electrolyte domains of the *P*(O₂) range from 0.02 to 4×10^{-23} atm at 502 °C. The σ_{ion} values of BaGdInO₄, BaGd_{0.9}Ca_{0.1}InO_{3.95}, Gd_{1.98}Ca_{0.02}O_{2.99} and Gd₂O₃ were corrected by the Bruggeman approximation.

Fig. S18 Partial oxygen pressure $P(O_2)$ dependence of the total electrical conductivity σ_{total} of Gd₂O₃ at 502 °C. It is strongly suggested that the dominant carrier is oxide ion in the whole $P(O_2)$ region. The σ_{total} values were corrected by the Bruggeman approximation.

References

1	ΡD	Shannon	Acta (^o mstallogr	1	1076	32	751_767	
1	K. D.	Shannon,	ACIU (rysiallogr.	А,	19/0,	32,	/31-/0/.	

- 2 K. Fujii, M. Shiraiwa, Y. Esaki, M. Yashima, S. J. Kim and S. Lee, J. Mater. Chem. A, 2015, 3, 11985–11990.
- 3 A. Fujimoto, M. Yashima, K. Fujii and J. R. Hester, J. Phys. Chem. C, 2017, 121, 21272–21280.
- 4 K. Fujii and M. Yashima, J. Ceram. Soc. Japan, 2018, 126, 852–859.
- 5 I. P. Machado, V. C. Teixeira, C. C. S. Pedroso, H. F. Brito and L. C. V. Rodrigues, *J. Alloys Compd.*, 2019, 777, 638–645.
- 6 T. Norby, O. Dyrlie, and P. Kofstad, J. Am. Ceram. Soc., 1992, 75, 1176–81.

End of ESI