Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2020

Electronic Supplementary Information

Electrostatic Self-Assembly of AgI/Bi2Ga4O9 p-n Junction Photocatalyst

for Boosting Superoxide Radical Generation

Jin Liu,^a Xingcai Zhang,^b Qian Zhong,^a Jun Li,^{*c} Hongzhang Wu,^a Bo Zhang,^a Lin

Jin,*a Hua Bing Tao,*d and Bin Liu*d

^a Henan Key Laboratory of Rare Earth Functional Materials, International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou 466001, P. R. China

^b John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, United States

^c Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, P. R. China

^d School of Chemical and Biomedical Engineering, Nanyang Technological University,
62 Nanyang Drive, Singapore 637459, Singapore

*Corresponding author, E-mail address: junlee1992@126.com (Jun Li), jinlin_1982@126.com (Lin Jin), hbtao@ntu.edu.sg (Hua Bing Tao), liubin@ntu.edu.sg (Bin Liu)

Fig. S1 Zeta potential of (a) Bi₂Ga₄O₉, (b) AgI and (c) 25%-AgI/ Bi₂Ga₄O₉. Zeta-1, Zeta-2, and Zeta-3 represent the first, second and third time measurement results, respectively.

Fig. S2 XRD patterns of $Bi_2Ga_4O_9$ with impurities and pure $Bi_2Ga_4O_9$.

Fig. S3 XRD patterns of $Bi_2Ga_4O_{9}$, AgI and AgI/ $Bi_2Ga_4O_9$ samples.

Fig. S4 XPS survey spectra.

Fig. S5 (a) UV-vis absorption spectra. (b) Plot of $(F(R_{\infty})hv)^2$ vs. photon energy for AgI. (c) Plot of $(F(R_{\infty}))^{1/2}$ vs. photon energy for Bi₂Ga₄O₉. (d) PL spectra, (e) time-resolved PL decay curves, and (f) change of photocurrent density with time.

Fig. S6 Mott-Schottky plots of Bi₂Ga₄O₉.

Fig. S7 UV-vis absorption spectra of (a) AR1 and (b) MNZ recorded after different durations of irradiation over 25%-AgI/Bi₂Ga₄O₉.

Fig. S8 Mass spectra and molecular structures of the intermediates in the photocatalytic degradation of MNZ over 25%-AgI/Bi₂Ga₄O₉.

Fig. S9 Possible photocatalytic degradation pathways of MNZ.

Fig. S10(a) Recycling runs of 25%-AgI/Bi₂Ga₄O₉ for the photocatalytic degradation of AR1. (b) XRD patterns and (c) XPS survey spectra and (d) high resolution XPS Ag 3d spectra of the fresh and recycled 25%-AgI/Bi₂Ga₄O₉.

Sample	Hall	Carrier	Hall	Resistivity (Ω·m)	Hall voltage (V)	Conduction type
	mobility	concentration	coefficient			
	$(m^2/V \cdot s)$	(1/m ³)	(m^{3}/C)			
AgI	1.613×10-2	1.919×10 ¹⁹	0.325	20.165	2.681×10-3	р

Table S1 The electrical properties of AgI sample.