Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2020

Electronic supplementary information

Osmium sensitizer with enhanced spin-orbit coupling for panchromatic dye-sensitized solar cells

Ratna Juwita,^a Jian-You Lin,^a Shi-Jie Lin,^a Yu-Chi Liu,^a Tsung-Yu Wu,^a Yu-Ming Feng,^a

Chia-Yuan Chen,*ab Hui-Hsu Gavin Tsai*ab and Chun-Geuy Wu*ab

a. Department of Chemistry, National Central University, Taoyuan 32001, Taiwan, R.O.C.

b. Research Center of New Generation Light Driven Photovoltaic Modules National Central University, Taoyuan 32001, Taiwan, R.O.C.
E-mail address of Professor Chia-Yuan Chen: <u>chiayuan@ncu.edu.tw</u>
E-mail address of Professor Hui-Hsu Gavin Tsai: <u>hhtsai@cc.ncu.edu.tw</u>
E-mail address of Professor Chun-Guey Wu: <u>t610002@cc.ncu.edu.tw</u>

Fig. S1 Energy level diagram of Os-3, CYC-33O, CYC-33R, N749, TiO₂ and I⁻/I₃⁻.

Fig. S2 Major NTOs for SR S₅, S₆ and S₈ states of **Os-3** calculated with SR-TDDFT. Hole and electron NTOs are displayed below and above the arrows, respectively. The v is the associated eigenvalue.

Fig. S3 Major NTOs for SR S₂, S₅, S₈, S₉, S₁₀, T₂ and T₅ states of **CYC-330** calculated with SR-TDDFT. Hole and electron NTOs are displayed below and above the arrows, respectively. The v is the associated eigenvalue.

Fig. S4 Major NTOs for SR S₄, S₅ and S₁₀ states of **CYC-33R** calculated with SR-TDDFT. Hole and electron NTOs are displayed below and above the arrows, respectively. The v is the associated eigenvalue.

Os-3						
	HOMO-2	HOMO-1	НОМО	LUMO	LUMO+1	LUMO+2
% Os	54 d _{xz}	61 d _{yz}	53 d _{xy}	$10 \ d_{yz}$	$3 d_{xz}$	6 d _{xy}
	7 d _{xy}	2 d _{xy}	11 d _{xz}		1 d _{xy}	
	$4 d_z^2$		1 d _{yz}			
	$1 d_x^2 - y^2$					
% CI	0	10 pz	8 p _x	1 p _y	0	0
% dmbpy	17	0	7	0	76	11
% H₃tctpy	3	14	11	85	14	79
	CYC-330					
	HOMO-2	HOMO-1	HOMO	LUMO	LUMO+1	LUMO+2
% Os	60 d _{yz}	57 d _{xz}	55 d _{xy}	4 d _{xz}	9 d _{yz}	4 d _{xy}
	2 d _{xy}	$2 d_z^2$	2 d _{yz}	2 d _{xy}		
	2 d _{xz}	$2 d_z^2$	1 d _{xz}			
% CI	11 pz	0	7 p _x	0	0	0
% TH-EDOT-bpy	0	16	12	58	5	1
% H₃tctpy	12	3	11	20	75	87
	CYC-33R					
	HOMO-2	HOMO-1	HOMO	LUMO	LUMO+1	LUMO+2
% Ru	51 d _{yz}	49 d _{xz}	47 d _{xy}	3 d _{xz}	6 d _{yz}	3 d _{xy}
	13 d _{xz}	9 d _{yz}	6 d _{yz}	2 d _{xy}		
	4 d _{xy}	4 d _{xy}	$6 d_x^2 - y^2$			
			3 d _{xz}			
% CI	7 pz	3 pz	7 p _x	0	0	0
	2 p _x		1 p _y			
			1 pz			
% TH-EDOT-bpy	0	9	9	64	10	0
% H₃tctpy	5	4	5	13	70	89

 Table S1
 Characteristics of the frontier molecular orbitals for Os-3, CYC-33O and CYC-33R

 calculated at the SR-B3LYP/ZOAR TZP level

Table S2 Excitation wavelengths (nm), oscillator strengths (*f*) and contributions of SR states for **Os-3** calculated with SR-TDDFT and SOC-TDDFT

Os-3				
SR States (TDDFT Singlet-Singlet Excitations)				
State	λ (nm)	f	Compositions	
S ₁	657	0.052	$(H \rightarrow L) (94\%), (H-2 \rightarrow L) (5\%)$	
S ₂	608	0.013	$(H \to L+1) (90\%)$	
S ₃	599	0.025	$(H-2 \rightarrow L) (86\%), (H-1 \rightarrow L+1) (7\%), (H \rightarrow L) (5\%)$	
S ₄	561	0.005	$(H-1 \rightarrow L+1) (87\%), (H-2 \rightarrow L) (8\%)$	
S ₅	553	0.159	$(H-1 \rightarrow L) (69\%), (H \rightarrow L+2) (18\%), (H-2 \rightarrow L+1) (9\%)$	
S ₆	528	0.270	$(H-2 \rightarrow L+1) (59\%), (H \rightarrow L+2) (30\%), (H \rightarrow L+1) (8\%)$	
S ₇	503	0.012	$(H-2 \rightarrow L+2) (45\%), (H \rightarrow L+2) (22\%), (H-2 \rightarrow L+1) (19\%), (H-1 \rightarrow L) (11\%)$	
S ₈	493	0.110	$(H-1 \rightarrow L+2) (94\%)$	
S ₉	457	0.028	$(H-2 \rightarrow L+2)$ (46%), $(H \rightarrow L+2)$ (23%), $(H-1 \rightarrow L)$ (10%), $(H \rightarrow L+3)$ (7%)	
S ₁₀	410	0.036	$(H \to L+3) (85\%)$	
S ₁₁	406	0.244	$(H \rightarrow L+4) (95\%)$	
			SR States (TDDFT Singlet-Triplet Excitations)	
State	λ (nm)	f	Compositions	
T 1	725	0.000	$(H-1 \to L) (88\%)$	
T ₂	722	0.000	$(H \rightarrow L) (94\%)$	
T₃	665	0.000	$(H \rightarrow L+1) (85\%), (H \rightarrow L+2) (10\%)$	
T 4	650	0.000	$(H-2 \rightarrow L+1) (78\%), (H-2 \rightarrow L+2) (12\%)$	
T ₅	636	0.000	$(H-2 \rightarrow L) (95\%)$	
T ₆	582	0.000	$(H-1 \rightarrow L+1) (90\%), (H-1 \rightarrow L+2) (5\%)$	
T ₇	568	0.000	$(H \rightarrow L+2) (81\%), (H \rightarrow L+1) (10\%)$	
T ₈	525	0.000	$(H-1 \rightarrow L+2) (91\%)$	
T9	504	0.000	$(H-2 \rightarrow L+2) (81\%), (H-2 \rightarrow L+1) (14\%)$	
T ₁₀	438	0.000	$(H \rightarrow L+3) (90\%)$	
T ₁₁	424	0.000	$(H \rightarrow L+4)$ (87%), $(H-1 \rightarrow L+3)$ (9%)	
T ₁₂	417	0.000	$(H-2 \rightarrow L+3)$ (61%), $(H-2 \rightarrow L+5)$ (13%), $(H \rightarrow L+6)$ (13%)	
T ₁₃	409	0.000	$(H-1 \rightarrow L+4) (71\%), (H-3 \rightarrow L+2) (6\%)$	
T ₁₄	405	0.000	$(H-1 \rightarrow L+3) (81\%), (H \rightarrow L+4) (10\%)$	
T ₁₅	403	0.000	$(H \rightarrow L+5) (35\%), (H-2 \rightarrow L+6) (23\%), (H \rightarrow L+6) (14\%), (H-1 \rightarrow L+4) (5\%)$	
States calculated by SOC-TDDFT				
State	λ (nm)	f	Contributions of SR states	
ST₃	787	0.011	T ₁ (27%), S ₁ (21%), T ₁ (8%), T ₅ (6%)	
ST ₈	694	0.012	T_3 (29%), T_4 (7%), T_6 (7%), T_6 (4%), S_6 (4%), $S_{2,3}$ (2%)	
ST ₂₃	569	0.047	S_5 (22%), T_6 (15%), T_8 (9%), T_6 (8%), T_9 (5%), S_6 (4%), S_7 (2%), T_3 (2%)	
ST ₂₇	533	0.136	$S_5(62\%), S_6(14\%), T_6(4\%), T_5(3\%), T_{8,9}(2\%), S_7(2\%)$	
ST ₃₀	509	0.156	S ₆ (56%), T ₈ (15%), S ₇ (5%), S ₅ (3%), T ₆ (2%)	
ST35	477	0.074	S ₈ (67%), T ₉ (30%)	
ST ₄₄	422	0.093	S ₁₁ (38%), T ₁₃ (24%), T ₁₂ (4%), T ₁₃ (3%)	
ST ₅₂	400	0.004	T ₁₅ (32%), T ₁₃ (11%), T ₁₁ (9%), T ₁₅ (7%), T _{11,13} (4%), T ₁₄ (3%), T ₁₄ (2%)	

Table S3 Excitation wavelengths (nm), oscillator strengths (*f*) and contributions of SR states for **CYC-330** calculated with SR-TDDFT and SOC-TDDFT

CYC-330					
SR States (TDDFT Singlet-Singlet Excitations)					
State	λ (nm)	f	Compositions		
S ₁	655	0.052	$(H \rightarrow L) (69\%), (H \rightarrow L+1) (16\%), (H-1 \rightarrow L) (11\%)$		
S ₂	635	0.076	$(H \rightarrow L+1) (69\%), (H \rightarrow L) (14\%), (H-1 \rightarrow L+1) (10\%)$		
S₃	609	0.052	$(H-1 \rightarrow L+1)$ (37%), $(H-1 \rightarrow L)$ (25%), $(H-2 \rightarrow L)$ (22%), $(H-2 \rightarrow L+1)$ (5%), $(H \rightarrow L+1)$ (5%)		
S ₄	587	0.002	$(H-2 \rightarrow L) (69\%), (H-1 \rightarrow L+1) (19\%)$		
S ₅	568	0.594	$(H-1 \rightarrow L) (42\%), (H-2 \rightarrow L+1) (31\%), (H-1 \rightarrow L+1) (13\%), (H \rightarrow L) (8\%)$		
S ₆	539	0.012	$(H \rightarrow L+2)$ (38%), (H-2 $\rightarrow L+1$) (36%), (H-1 $\rightarrow L+1$) (9%), (H-1 $\rightarrow L$) (5%)		
S ₇	502	0.068	$(H-1 \rightarrow L+2)$ (57%), (H $\rightarrow L+2$) (19%). (H-2 $\rightarrow L+1$) (8%)		
S ₈	487	0.108	$(H-2 \rightarrow L+2) (90\%), (H-1 \rightarrow L+2) (5\%)$		
S ₉	478	0.121	$(H \rightarrow L+3)$ (39%), (H-1 $\rightarrow L+2$) (25%), (H $\rightarrow L+2$) (21%)		
S ₁₀	461	0.464	$(H \rightarrow L+3) (44\%), (H-1 \rightarrow L+3) (19\%), (H \rightarrow L+2) (11\%), (H \rightarrow L+4) (6\%)$		
S ₁₁	448	0.095	$(H-1 \rightarrow L+3)$ (57), (H $\rightarrow L+4$) (32%)		
S ₁₂	439	0.003	$(H-2 \rightarrow L+3) (97\%)$		
S ₁₃	435	0.013	$(H \rightarrow L+4) (58\%), (H-1 \rightarrow L+4) (15\%), (H-1 \rightarrow L+3) (14\%)$		
S ₁₄	419	0.411	$(H-1 \rightarrow L+4)$ (69%), $(H \rightarrow L+6)$ (12%)		
S ₁₅	413	0.019	$(H-2 \rightarrow L+4) (96\%)$		
			SR States (TDDFT Singlet-Triplet Excitations)		
State	λ (nm)	f	Compositions		
T ₁	747	0.000	$(H \rightarrow L) (61\%), (H-1 \rightarrow L) (11\%), (H-2 \rightarrow L+1) (6\%)$		
T ₂	713	0.000	$(H-1 \rightarrow L) (41\%), (H \rightarrow L) (29\%), (H-2 \rightarrow L+1) (8\%), (H-2 \rightarrow L) (5\%), (H \rightarrow L+1) (5\%)$		
T ₃	704	0.000	$(H \rightarrow L+1) (80\%), (H-1 \rightarrow L+1) (10\%)$		
T ₄	690	0.000	$(H-2 \rightarrow L+1) (57\%), (H-1 \rightarrow L) (26\%), (H-2 \rightarrow L) (9\%)$		
T ₅	638	0.000	$(H-1 \rightarrow L+1)$ (68%), $(H-2 \rightarrow L)$ (18%), $(H-1 \rightarrow L)$ (5%)		
T ₆	614	0.000	$(H-2 \rightarrow L)$ (58%), $(H-2 \rightarrow L+1)$ (22%), $(H-1 \rightarrow L+1)$ (9%), $(H-1 \rightarrow L)$ (5%)		
T ₇	563	0.000	$(H \rightarrow L+2) (82\%)$		
T ₈	526	0.000	$(H \rightarrow L+3)$ (63%), (H-1 \rightarrow L+3) (9%), (H-3 \rightarrow L) (5%)		
T ₉	517	0.000	$(H-2 \rightarrow L+2)$ (85%), $(H-1 \rightarrow L+2)$ (7%)		
T ₁₀	505	0.000	$(H-1 \rightarrow L+2)$ (80%), $(H-2 \rightarrow L+2)$ (8%)		
T ₁₁	494	0.000	$(H-1 \rightarrow L+3) (40\%), (H-1 \rightarrow L+4) (30\%), (H \rightarrow L+3) (7\%)$		
T ₁₂	457	0.000	$(H \rightarrow L+4)$ (48%), (H-1 $\rightarrow L+4$) (18%), (H-1 $\rightarrow L+3$) (14%), (H-2 $\rightarrow L+3$) (10%)		
T ₁₃	452	0.000	$(H \rightarrow L+4) (40\%), (H-1 \rightarrow L+4) (26\%), (H-1 \rightarrow L+3) (13\%)$		
T ₁₄	442	0.000	$(H-2 \rightarrow L+3) (94\%)$		
-	400	0.000	$(H-3 \rightarrow L)$ (26%), $(H-3 \rightarrow L+3)$ (11%), $(H-1 \rightarrow L+3)$ (10%), $(H \rightarrow L+3)$ (9%), $(H-6 \rightarrow L)$		
I 15	439	0.000	$(8\%), (H-1 \rightarrow L+4) (7\%)$		
States calculated by SOC-TDDFT					
State	λ (nm)	f	Contributions of SR states		
ST ₆	760	0.025	S ₁ (12%), T ₄ (10%), T ₃ (9%), T _{2,5} (6%), T ₅ (4%), S ₅ (3%), T ₄ (3%), T ₁ (2%)		
ST ₇	756	0.021	T ₄ (13%), S ₂ (12%), T ₂ (9%), T ₅ (7%), T ₂ (6%), T ₅ (4%), T ₄ (3%), T ₃ (2%), S _{1,5} (2%)		
ST13	642	0.026	S1 (22%), T5 (14%), S2 (14%), T4 (11%), T1 (5%), T6 (5%), T3,6 (2%)		
ST ₂₀	595	0.030	S ₃ (51%), T ₆ (10%), T ₇ (9%), T _{2,3,6} (2%)		
ST ₂₇	553	0.484	S ₅ (81%), T ₅ (6%), T ₆ (3%)		
ST35	507	0.044	T ₁₁ (20%), S ₆ (11%), T ₉ (9%), S ₁₀ (8%), T ₉ (5%), S ₉ (3%), T ₁₄ (3%), T ₇ (2%)		
ST ₄₁	479	0.102	S ₁₀ (16%), S ₉ (16%), T ₁₁ (10%), T ₁₂ (9%), S ₇ (6%), T ₁₃ (3%), T ₉ (3%), S ₁₁ (3%), T ₁₄ (3%), S ₁₂ (2%)		
ST ₄₇	456	0 105	S_{11} (27%), S_9 (17%), T_{14} (11%), S_{10} (10%), T_{17} (7%), S_{14} (3%), T_{12} (3%), T_{13} (2%)		
ST 50	445	0.205	S_{10} (41%), S_{11} (11%), T_{12} (11%), S_{13} (8%), T_{12} (6%), T_{14} (2%)		
ST _{E0}	414	0.358	St4 (87%) T ₁₂ (3%) T ₁₃ (2%)		
- 109		0.000			

Table S4 Excitation wavelengths (nm), oscillator strengths (*f*) and contributions of SR states for **CYC-33R** calculated with SR-TDDFT and SOC-TDDFT

CYC-33R					
SR States (TDDFT Singlet-Singlet Excitations)					
State	λ (nm)	f	Compositions		
S ₁	589	0.107	$(H \rightarrow L) (75\%), (H \rightarrow L+1) (15\%), (H-1 \rightarrow L) (5\%)$		
S ₂	572	0.016	$(H \rightarrow L+1) (69\%), (H \rightarrow L) (10\%), (H-1 \rightarrow L) (9\%)$		
S ₃	553	0.007	$(H-1 \rightarrow L+1) (56\%), (H-2 \rightarrow L) (25\%), (H-1 \rightarrow L) (6\%)$		
S4	534	0.103	$(H-1 \rightarrow L) (45\%), (H-2 \rightarrow L) (26\%), (H-2 \rightarrow L+1) (18\%), (H \rightarrow L) (7\%)$		
S ₅	526	0.434	$(H-2 \rightarrow L) (45\%), (H-1 \rightarrow L+1) (35\%), (H-1 \rightarrow L) (9\%), (H-2 \rightarrow L+1) (5\%)$		
S ₆	500	0.029	$(H-2 \rightarrow L+1) (44\%), (H \rightarrow L+2) (35\%), (H-1 \rightarrow L) (9\%), (H \rightarrow L+1) (5\%)$		
S 7	472	0.043	$(H-1 \rightarrow L+2) (66\%), (H \rightarrow L+2) (17\%), (H-2 \rightarrow L+1) (6\%), (H-1 \rightarrow L) (5\%)$		
S ₈	453	0.069	$(H-2 \rightarrow L+2) (71\%), (H \rightarrow L+2) (8\%), (H \rightarrow L+3) (7\%), (H-1 \rightarrow L+2) (5\%)$		
S ₉	450	0.052	$(H \rightarrow L+2) (25\%), (H-2 \rightarrow L+2) (24\%), (H-1 \rightarrow L+2) (22\%), (H \rightarrow L+3) (13\%)$		
S ₁₀	431	0.409	$(H \rightarrow L+3)$ (56%), $(H-1 \rightarrow L+3)$ (28%)		
S ₁₁	417	0.125	$(H-1 \to L+3) (54\%), (H \to L+4) (18\%), (H \to L+3) (9\%)$		
S ₁₂	409	0.037	$(H-2 \rightarrow L+3)$ (71%), (H \rightarrow L+4) (24%)		
S ₁₃	407	0.084	$(H \rightarrow L+4) (55\%), (H-2 \rightarrow L+3) (21\%), (H-1 \rightarrow L+3) (7\%)$		
<u></u>			SR States (TDDFT Singlet-Triplet Excitations)		
State	λ (nm)	<i>t</i>			
	650	0.000	$(H \to L) (51\%), (H-1 \to L) (25\%), (H \to L+1) (9\%)$		
	640	0.000	$(H \to L) (37\%), (H \to L+1) (27\%), (H-1 \to L) (15\%), (H-1 \to L+1) (9\%)$		
	618	0.000	$(H-1 \to L) (41\%), (H \to L+1) (31\%), (H-1 \to L+1) (8\%), (H-2 \to L) (5\%)$		
14 	600	0.000	$(H-1 \rightarrow L+1)$ (30%), $(H \rightarrow L+1)$ (24%), $(H-2 \rightarrow L)$ (22%), $(H-2 \rightarrow L+1)$ (19%)		
	569	0.000	$(H-2 \rightarrow L+1)$ (51%), $(H-1 \rightarrow L+1)$ (36%), $(H-1 \rightarrow L)$ (5%)		
	556	0.000	$(H-2 \rightarrow L)$ (65%), $(H-2 \rightarrow L+1)$ (12%), $(H-1 \rightarrow L+1)$ (10%)		
	515	0.000	$(H \to L+2) (85\%)$		
	492	0.000	$(\Pi \to L+3) (29\%), (\Pi - 3 \to L) (19\%), (\Pi - 1 \to L+3) (15\%), (\Pi - 3 \to L+3) (5\%)$		
	404	0.000	$(\Pi^{-1} \to L^{+}2) (14\%), (\Pi^{-}2 \to L^{+}2) (10\%)$		
T 10	475	0.000	$(11-1 \rightarrow L+3) (19\%), (11 \rightarrow L+3) (15\%), (11-1 \rightarrow L+4) (9\%), (11-0 \rightarrow L) (0\%)$ $(H_22 \rightarrow L+2) (71\%) (H_21 \rightarrow L+2) (16\%)$		
T 11 T 12	405	0.000	$(H \rightarrow L + 10) (54\%) (H_{-2} \rightarrow L + 10) (5\%)$		
T ₁₂	432	0.000	$(H \rightarrow L+3) (42\%) (H-3 \rightarrow L) (14\%) (H-1 \rightarrow L+10) (11\%) (H-3 \rightarrow L+3) (7\%)$		
T ₁₃	430	0.000	$(H-1 \rightarrow L+3)(42.%), (H-3 \rightarrow L)(14.%), (H-1 \rightarrow L+10)(11.%), (H-3 \rightarrow L+3)(15.%) (H-2 \rightarrow L+3)(8.%)$		
T ₁₄	425	0.000	$(H-2 \rightarrow 1+10) (32\%), (H \rightarrow 1+4) (14\%), (H \rightarrow 1+10) (9\%), (H-2 \rightarrow 1+3) (5\%)$		
T ₁₆	423	0.000	$(H-5 \rightarrow L)(27\%)(H-5 \rightarrow L+3)(16\%)(H-6 \rightarrow L)(13\%)(H-3 \rightarrow L)(7\%)$		
T ₁₇	419	0.000	$(H \rightarrow L+4)$ (44%), (H-1 \rightarrow L+10) (14%), (H \rightarrow L+10) (8%), (H-3 \rightarrow L) (6%)		
T ₁₈	417	0.000	$(H-1 \rightarrow L+3)$ (26%), $(H \rightarrow L+4)$ (24%), $(H-1 \rightarrow L+10)$ (12%), $(H-3 \rightarrow L)$ (6%)		
			$(H-4 \rightarrow L)$ (19%), $(H-4 \rightarrow L+3)$ (12%), $(H-1 \rightarrow L+4)$ (10%), $(H-5 \rightarrow L)$ (8%), $(H-2 \rightarrow L+3)$		
19	410	0.000	$(7\%), (H-4 \rightarrow L+1) (6\%), (H-5 \rightarrow L+3) (5\%), (H-4 \rightarrow L+4) (5\%)$		
T ₂₀	409	0.000	$(H-1 \rightarrow L+4) (50\%), (H-6 \rightarrow L) (14\%), (H-5 \rightarrow L) (5\%)$		
			States calculated by SOC-TDDFT		
State	λ (nm)	f	Contributions of SR states		
ST₃	662	0.002	T ₁ (26%), T ₁ (22%), T ₂ (17%), T ₂ (4%), T ₃ (2%), S ₁ (2%)		
ST ₁₃	585	0.079	S ₁ (74%), T ₄ (6%), S ₂ (2%)		
ST22	532	0.098	S4 (94%)		
ST ₂₃	524	0.405	S ₅ (93%), T ₆ (2%), T ₅ (2%)		
ST ₃₇	473	0.024	S ₇ (54%), T ₁₁ (18%), T ₁₀ (7%), T ₁₀ (3%), T ₉ (3%), T ₇ (2%)		
ST ₄₆	437	0.093	T ₁₄ (22%), S ₁₀ (22%), T ₁₅ (8%), T _{13,15} (3%), S ₈ (2%), S ₁₁ (2%)		
ST ₄₇	435	0.106	T ₁₃ (28%), S ₁₀ (25%), T ₁₄ (6%), T ₁₃ (4%)		
ST ₅₂	427	0.120	S ₁₀ (29%), T ₁₄ (15%), T ₁₄ (12%), T ₁₃ (5%), T _{15,17} (2%)		