Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2020

Supplementary Information

Nickel mediated Palladium free photocatalytic Suzuki-coupling reaction under

visible light irradiation

Pankaj Kumar Prajapati^{1,2}, Sandhya Saini^{1,2} and Suman L. Jain^{1*}.

¹Synthetic Chemistry and Petrochemicals Area, Chemical and Material Sciences Division, CSIR-

Indian Institute of Petroleum, Haridwar Road, Mohkampur, Dehradun, India-248005

²Academy of Scientific and Innovative Research (AcSIR), New Delhi, India-110001.

*Corresponding Author

Email: suman@jip.res.in; Phone: +911352525788.

Table of Content

1.1.	Characterization Techniques used	(S2)
2.1.	FE-SEM images and EDX pattern of CNO-0 and CNO-10	(S3)
2.2.	Elemental mapping of CNO-10 photocatalyst (Figure S1)	(S3)
3. Ga	as chromatogram of biphenyls	(S4-S9)
4. ¹ H	& ¹³ C NMR of biphenyls	(S10-S13)

1.1 Characterization Techniques Used

HR-TEM used to demonstrate the morphology and d-spacing in the materials with the help of a JEM 2100 (JEOL, Japan) microscope. Bruker D8 Advance diffractometer determined the diffraction patterns, crystallinity, and crystal planes of the materials at 40 kV and 40 mA with Cu K_aradiation ($\lambda = 0.15418$ nm). FT-IR spectroscopy identified the different vibrational modes on a Perkin-Elmer spectrum RX-1 IR spectrophotometer. Shimadzu UV-VIS-NIR spectrophotometer recorded the electronic spectra of the synthesized materials with a 10-mm quartz cell by using BaSO₄ as a reference. N₂ adsorption-desorption analysis calculated the BET surface area, pore-volume, and mean pore diameter by using Micromeritics ASAP 2010. The chemical properties of the hybrid CNO-10 analyzed by XPS analysis using ESCA+ equipment (omicron nanotechnology, Oxford Instrument Germany) equipped with monochromator Aluminum Source (Al ka radiation hv =1486.7 eV). The thermo-gravimetric technique determined the weight loss of the materials from room temperature to 800 °C under nitrogen flow using a thermal analyzer TA-SDT Q-600. ICP-AES estimated the metal content in the CNO-10 hybrid using ICP-AES, DRE, PS-3000UV, Leeman Labs Inc, USA). Nitric acid used to digest the sample and diluted to 10 mL withde-ionized water. GC-FID (Varian CP-3800, Column specification: Varian capillary column, CP Sil 24CB LOW BLEED/MS 30 m, 0.25 µm # CP 5817) at the flow rate 0.5 mL min⁻¹, injector temperature 330 °C, FID detector temperature 350 °C used to find and confirm the conversion and products. ¹H and ¹³C NMR spectral data of biphenyls collected on a Bruker Advance-II 500 MHz with operating frequency at 500 MHz.

2.1. FE-SEM images and EDX pattern of CNO-0 and CNO-10

Fig. S2. a), b) and d), e) FE-SEM images of CNO-0 and CNO-10 photocatalyst and, c) and f) EDX patternof CNO-0 and CNO-10 photocatalyst.

2.2. Elemental mapping of CBO-0 and CNO-10

Fig. S1. Elemental mapping a) Ni and b) O for NiO semiconductor.Elemental mapping c) Ni,d) C,e) Co, f) O, and g) N for CNO-10 photocatalyst.

3.1. Gas Chromatogram of Biphenyl

3.2. Gas Chromatogram of 4-Chloro-1,1'-biphenyl

3.3. Gas Chromatogram of 2-Chloro-[1,1'-biphenyl]-4-ol

3.4. Gas Chromatogram of 4-Phenylaniline

3.5. Gas Chromatogram of 2-Chlorobiphenyl

3.6. Gas Chromatogram of 4-Phenyl-N,N-dimethylaniline

3.7. Gas Chromatogram of 4-Phenyltoluene

3.8. Gas Chromatogram of 4-Chloroanisole

3.9. Gas Chromatogram of 4-Phenylphenol

3.10. Gas Chromatogram of 4-Ethylbiphenyl

3.11. Gas Chromatogram of 4-Phenylanisole

4.1.1. ¹H NMR of biphenyl

4.1.2. ¹³C NMR of biphenyl

4.2.1. ¹H NMR of 4-chlorobiphenyl

4.2.2. ¹³C NMR of 4-chlorobiphenyl

4.3.1. ¹H NMR of 4-nitrobiphenyl

4.3.2. ¹³C NMR of 4-nitrobiphenyl

110 100 f1 (ppm)

4.4.1. ¹H NMR of 4-phenylphenol

4.4.2. ¹³C NMR of 4-phenylphenol

