## **Electronic Supplementary Information (ESI)**

## One-step rapid synthesis of TS-1 zeolites with highly catalytic active mononuclear TiO<sub>6</sub> species

Wenjing Xu,<sup>a</sup> Tianjun Zhang,<sup>ac</sup> Risheng Bai,<sup>a</sup> Peng Zhang,<sup>c</sup> Jihong Yu\*<sup>ab</sup>

a State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China.

b International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.

c Department of Chemistry, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.

## **Chemicals and materials**

The reagents used in this work include tetraethylorthosilicate (TEOS, Shanghai Chemical Reagent), tetrabutyl orthotitanate (TBOT, Shanghai Chemical Reagent), tetrapropylammonium hydroxide (25 wt%, Guangfu Fine Chemical Research Institute),  $H_2O_2$  (30 wt%, Beijing Chemical Works), 1-hexene (98%, Aladdin), methanol (99%, Guangfu Fine Chemical Research Institute), ethanol (99%, Guangfu Fine Chemical Research Institute), and chlorobenzene (99%, DaMao Chemical Reagent Factory).

## Characterizations

The crystallinity and phase purity of the samples were characterized by power X-ray diffraction (XRD) on a Rigaku D- Max 2550 diffractometer using Cu K $\alpha$  radiation ( $\lambda$ = 1.5418 Å). The crystal size and morphology were measured by a scanning electron microscopy (SEM) using a JSM-6700F (JEOL) electron microscope. Transmission electron microscopy (TEM) images were recorded with a Tecnai F20 electron microscope. Nitrogen adsorption/desorption measurements were carried out on a Micromeritics 2020 analyzer at 77 K after degassing the samples at 623 K under vacuum. Chemical compositions were determined with an X-ray fluorescence (XRF) spectrometer (PANalytical, AXIOS). Infrared spectra (IR) were recorded by Nicolet Impact 410 FT-IR Infrared Instrument using KBr pellet technique. The UV-Vis DRS (diffuse reflectance spectroscopy) of the catalyst was recorded over the range of 200 nm to 500 nm against the support as reference, on a SHIMADZU U-4100. X-ray photoelectron spectroscopy (XPS) was performed using an ESCALAB 250 spectrometer. Ultraviolet Raman resonance spectroscopy (UV-Raman) (266 nm) were recorded on a DL-2 Raman spectrometer using the 266 nm line of a He-Ge laser as the excitation source and a Princeton CCD as the detector. X-ray absorption spectroscopy data were collected at the Sector 20-BM beamline of the Advanced Photon Source at Argonne National Laboratory. Sample powders were packed on plastic washer and folded multiple times to enhance the signal. The beamline was equipped with a doublecrystal Si (111) monochromator. A 12-element Ge fluorescence detector was used to collect spectra of the Ti K-edge. Data processing and EXAFS fitting were performed using the Athena, Artemis and Igor software.



Fig. S1 XRD patterns of conventional TS-1 zeolites of different crystallization time.



Fig. S2 SEM images of conventional TS-1 (TS-1-C) (a), active seeds-assisted microwave irradiation TS-1 (TS-1-AM) (b), active seeds-assisted TS-1 (TS-1-A) (c), microwave-assisted TS-1 (TS-1-M) (d) zeolites.



Fig. S3  $N_{\rm 2}$  adsorption–desorption isotherms of different TS-1 zeolites.

| samples | S <sub>BET</sub><br>(m²/g)ª | S <sub>micro</sub><br>(m²/g) <sup>b</sup> | S <sub>ext</sub><br>(m²/g) <sup>b</sup> | V <sub>micro</sub><br>(cm <sup>3</sup> /g) <sup>b</sup> |
|---------|-----------------------------|-------------------------------------------|-----------------------------------------|---------------------------------------------------------|
| TS-1-C  | 439.1                       | 271.9                                     | 167.2                                   | 0.13                                                    |
| TS-1-AM | 451.2                       | 280.9                                     | 170.3                                   | 0.13                                                    |
| TS-1-A  | 449.8                       | 234.9                                     | 214.9                                   | 0.11                                                    |
| TS-1-M  | 452.5                       | 272.5                                     | 180.0                                   | 0.13                                                    |

Table S1 textural properties of different TS-1 zeolites.

a.  $S_{BET}$  (total surface area) calculated using the BET method; b.  $S_{micro}$  (micropore area),  $S_{ext}$  (external surface area) and  $V_{micro}$  (micropore volume) calculated using the t-plot method.



Fig. S4 XPS spectra of TS-1-C, TS-1-AM, TS-1-A, TS-1-M zeolites.

The XPS spectra of the Ti 2p region are presented in Fig. S4. The peaks at 460.4, 459.2 and 458.2 eV should be attributed to framework  $TiO_4$ , high coordinated Ti species and anatase  $TiO_2$ , respectively.<sup>[1-2]</sup>

1. L. Z. Wu, X. J. Deng, S. F. Zhao, H. M. Yin, Z. X. Zhuo, X. Q. Fang, Y. M. Liu and M. Y. He, *Chem. Commun.*, 2016, **52**, 8679-8682.

2. A. C. Alba-Rubio, J. L. G. Fierro, L. León-Reina, R. Mariscal, J. A. Dumesic, M. López. Granados, *Appl. Catal., B*, 2017, **202**, 269-280.



Fig. S5 The XRD patterns (A), UV-vis (B) and UV-Raman (C) spectra of TS-1-TiO<sub>4</sub> zeolite.



Figure S6. Experimental data (solid black lines) and fits (empty red circles) of Fouriertransformed Ti K edge EXAFS spectra for different TS-1 zeolites.

| Sample                | Shell | C.N.   | <b>R</b> (Å) | σ (Å <sup>2</sup> ) | ΔΕ <sub>0</sub><br>(eV) | R-factor<br>(%) |
|-----------------------|-------|--------|--------------|---------------------|-------------------------|-----------------|
| TS-1-C                | Ti-O  | 4.5(8) | 1.84(2)      | 0.004(3)            | 5.2(3)                  | 2.4             |
| TS-1-AM               | Ti-O  | 4.3(6) | 1.83(1)      | 0.001(1)            | 9.6(3)                  | 0.9             |
| TS-1-TiO <sub>4</sub> | Ti-O  | 4      | 1.82(1)      | 0.0004(1)           | 6.8(2)                  | 2.2             |

Table S2. Structural parameters of different TS-1 zeolites extracted from the EXAFS fitting.

C.N. is the coordination number; R is bond distance;  $\sigma^2$  is Debye-Waller factor (a measure of thermal and static disorder in absorber-scatterer distances);  $\Delta E_0$  is edgeenergy shift (the difference between the zero-kinetic energy value of the sample and that of the theoretical model). R factor is used to value the goodness of the fitting.



Fig. S7 The XRD patterns (A), UV-vis (B), FTIR (C) and UV-Raman (D) spectra of TS-1-AM and TS-1-CM zeolites.



Fig. S8 The SEM images of TS-1-AM and TS-1-CM zeolites.

| 1       |          |                  | 5           |          |        |      |
|---------|----------|------------------|-------------|----------|--------|------|
|         | T        | C:/T:9           | Conv. (%) — | Sel. (%) |        | TONb |
|         | 1960/800 | <b>5</b> 1/ 1 1ª |             | epoxide  | others | 1010 |
| TS-1-AM | 1.10     | 80               | 28.0        | 90.0     | 10.0   | 272  |
| TS-1-CM | 1.13     | 71               | 20.1        | 90.1     | 9.9    | 177  |

Table S3 Epoxidation of 1-hexene over different TS-1 catalysts

a. The elemental compositions are determined by XRF; b. TON in mol (mol of Ti)<sup>-1</sup>, turnover number per Ti site for 1-hexene conversion. Reaction conditions: catalyst 50 mg, 1-hexene 10 mmol,  $H_2O_2$  10 mmol,  $CH_3OH$  10 mL, temp. 333 K, time 2 h. Others, 1-methoxyhexan-2-ol, 2-methoxyhexan-1-ol, 1,2-hexanediol.



Fig. S9 The XRD patterns (A) and UV-vis (B) spectra of TS-1-AM and TS-1-A (4d).

|                       | Si/Ti <sup>a</sup> | Conv. (%) — | Sel.    | TONh   |     |
|-----------------------|--------------------|-------------|---------|--------|-----|
|                       |                    |             | epoxide | others | IUN |
| TS-1-AM               | 80                 | 28.0        | 90.0    | 10.0   | 272 |
| TS-1-TiO <sub>4</sub> | 90                 | 16.5        | 95.6    | 4.4    | 181 |
| TS-1-A (4d)           | 69                 | 18.6        | 92.4    | 7.6    | 156 |

Table S4 Epoxidation of 1-hexene over different TS-1 catalysts

a. The elemental compositions are determined by XRF; b. TON in mol (mol of Ti)<sup>-1</sup>, turnover number per Ti site for 1-hexene conversion. Reaction conditions: catalyst 50 mg, 1-hexene 10 mmol,  $H_2O_2$  10 mmol,  $CH_3OH$  10 mL, temp. 333 K, time 2 h. Others, 1-methoxyhexan-2-ol, 2-methoxyhexan-1-ol, 1,2-hexanediol.



Fig. S10 Epoxidation of 1-hexene over TS-1-AM with various Ti contents.



Fig. S11 The XRD patterns (A) and FT-IR (B) spectra of TS-1-AM in reuse test.