Is Cs₂TiBr₆ a promising Pb-free perovskite for solar energy applications?

Julie Euvrard,^a Xiaoming Wang,^b Tianyang Li,^a Yanfa Yan^b and David B. Mitzi *^{a,c}

^a Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708,

United States

^b Department of Physics and Astronomy and Wright Center for Photovoltaics Innovation and Commercialization, The

University of Toledo, Toledo, Ohio 43606, United State

^c Department of Chemistry, Duke University, Durham, North Carolina 27708, United States

SUPPLEMENTARY INFORMATION

Figure S1. XRD spectra of Cs_2TiBr_6 powder without thermal treatment before and directly after removal of the protective Kapton film. The dashed lines denote the peak position of the lower lattice constant Cs_2TiBr_6 phase. The relative humidity RH is around 45-50 % during the measurement.

Figure S2. Pawley profile fitting of the XRD pattern of Cs_2TiBr_6 powder annealed at 100°C for 30 min. Goodness of fit, R_p and R_w values of 0.99, 9.54 and 12.91 are extracted from the Pawley fitting, respectively. The resulting refined unit cell parameter is $a = 10.6907\pm0.0005$ Å.

Figure S3. Tauc plots for Cs₂TiBr₆ considering indirect and direct bandgaps. The data are acquired using diffuse reflectance measurements on Cs₂TiBr₆ powder.

Figure S4. a) Absorption spectra obtained from successive diffuse reflectance measurements on Cs_2TiBr_6 powder. Each measurement takes about 5 min. b) Tauc plots considering indirect and direct bandgaps on the 3^{rd} measurement in a) (orange).

Figure S5. PL spectrum of Silicon substrate using an excitation wavelength of 442 nm.

Figure S6. Evolution of the Cs_2TiBr_6 PL spectra between the first (directly after exposure to ambient atmosphere) and after and the second (after ~3 min) measurement.

Figure S7. Imaginary part of the dielectric function ε_2 around the fundamental band edge obtained from DFT calculations.

Figure S8. Evolution of Cs₂TiBr₆ XRD spectra over time in ambient atmosphere with a relative humidity RH around 45-50%.