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Supporting Information

Figure S1 The valence band charge density contribution (squared modulus of wave function) of 

the hypothetical isomer of PTTA from (a) Γ point and (b) Σ point, respectively. Both states show 

extensive conjugation in two dimensions, which is very different from the case of experimentally 

synthesized PTTA structure.

Figure S2 (a) The side and (b) top views of 2D PTTA structure after 13 ps ab initio molecular 

dynamics simulation in NVT ensemble at 300 K. (c) The side and (d) top views of 2D PTTA 

structure after 6 ps ab initio molecular dynamics simulation in NVT ensemble at 600 K. The 

conservation of the planarity supports PTTA’s thermodynamic stability at finite temperatures.



Figure S3. The phonon-limited scattering rate for states in (a) valence and (b) conduction bands, 

respectively for 2D PTTA.

The impurity-limited electron scattering rate, which is proportional to the density of impurities in 

Thomas Fermi screening approximation, is shown in Figure S4. Here nimp is the average number 

of impurities per unit cell.



Figure S4. Ratio between impurity-limited scattering rate and average number of impurities per 

unit cell of PTTA, for (a) valence and (b) conduction bands.

Figure S5 (a) Seebeck coefficient, (b) electron mobility, and (c) power factor of PTTA with n-

type doping at 300 K. Seebeck coefficient is still higher than that from 2D parabolic band model, 

demonstrating the significance of DOS peak that also appears near the conduction band edge.



Conduction band structure

The conduction band also possesses ridge-like structure similar to the case of valence band 

shown in Figure 1g. The three-dimensional visualization of first conduction band is given in 

Figure S6 below, together with the squared modulus of wave functions at Γ and S points which 

show similar coexistence of 1D and 2D states.

Figure S6. (a)Squared modulus of wave function (|ψ(r)|2) for the first conduction band at Γ point. 

The π electron conjugation extends to all connecting repeating units. (b) Three-dimensional 

visualization of first conduction band dispersion. A ridge-like dispersion is found near zone 

boundary S point. (c) |ψ(r)|2 for the first conduction band at S point. The π electron conjugation 

extends only along para direction, exhibiting quasi-1D confinement which corresponds to the 

ridge-like band structure near S point and the singularity in DOS.



Stacking of 2D PTTA layer

Here we optimized the structure of three types of stacking order for 2D PTTA, the direct on-top 

stacking (AA), the alternating stacking similar to Bernal stacking of graphene (AB), and 

monoclinic stacking where each layer is translated by the same vector (ABC). The optimized 

atomic structures are shown in Figure S7. The optimized lattice parameters for AA-, AB- and 

ABC-stacked PTTA, using D21 and D32 van der Waals corrections for dispersion interactions, are 

given in Table S1. Despite the slight differences in lattice constants and binding energy, the results 

from both D2 and D3 corrections imply that AB- and ABC-stacking are more stable than AA-

stacking, while the difference between AB- and ABC-stacking is less discernible.

Figure S7. Top and side views of atomic structure for (a) AA-, (b) AB- and (c) ABC- stacked 2D 

PTTA. Primitive cells are shown instead of conventional cells. AA- and ABC-stacked 2D PTTA 

are shown as supercells to visualize the relative position of neighboring layers.



Table S1. The space groups and lattice constants (a, b, c, β) for three different stacking orders in 

conventional cell. The interlayer distances d, and the interlayer binding energy ΔE defined as per 

layer energy difference between isolated layer and stacked layers, are also given.

stacking space group a (Å) b (Å) c (Å) β (°) d (Å)
ΔE 

(eV)

AA
Orthorhombic 

Cmmm
14.06 19.55 3.75 90 3.75 -0.757

AB
Orthorhombic 

Cmcm
14.05 19.55 6.80 90 3.40 -1.078

PBE-

D2

ABC
Monoclinic 

C2/m
12.76 19.55 3.76 96.6 3.36 -1.083

AA
Orthorhombic 

Cmmm
14.09 19.53 3.84 90 3.84 -0.829

AB
Orthorhombic 

Cmcm
14.09 19.54 7.14 90 3.57 -1.046

PBE-

D3

ABC
Monoclinic 

C2/m
12.83 19.54 3.94 98.1 3.37 -1.052



Figure S8. Electron density-of-states of AA-, AB- and ABC-stacked 2D PTTA near (a) valence 

and (b) conduction band edges.

In all three stacking orders studied here, the density-of-states near the band edges shows an 

increase that is different from three-dimensional parabolic band, as shown in Figure S8. A sharp 

increase near valence band edge appears around -0.05 eV for AA- and AB-stacked 2D PTTA, 

which is similar to the case of single layer. Meanwhile, the feature near -0.1 eV is more prominent 

for ABC-stacked PTTA. Despite such difference in peak position due to different inter-layer 

interaction, sharp increase is observed in valence band for all three stacking orders studied here, 

suggesting bulk layered PTTA to be a potential TE material where Seebeck enhancement due to 

Mahan-Sofo theory can be expected.

The peaks in conduction band of AA- and AB-stacked PTTA are similar to the case of valence 

band, while the increase of the DOS for ABC-stacked PTTA appears further away from band edge 

at around 0.15 eV.



Electrical conductivity and electronic thermal conductivity

The electrical conductivity σ and electronic thermal conductivity κe, which strongly depend on the 

carrier concentration, are shown in Figure S9 for p-type and n-type doping.

Figure S9. Carrier concentration dependence of (a) electrical conductivity and (b) electronic 

thermal conductivity for p-type carriers. (c) and (d) are electrical and electronic thermal 

conductivity for n-type carriers.

Due to the relatively small carrier mobility, the electrical conductivity at high doping level is not 

very large, around the order of 102 S cm-1. The electronic contribution to thermal conductivity is 

lower than 1 W m-1 K-1, which is within the commonly observed range for polymer materials3.



Temperature dependence of transport properties

The doping level dependent transport coefficients, including Seebeck coefficients S, Hall mobility 

μH, electrical conductivity σ, electronic thermal conductivity κe, and power factor PF, are 

calculated at different temperatures of 200 K, 250 K, 300 K, 350 K, and 400 K. The results for p-

type doping are given in Figure S10 and n-type doping in Figure S11.

Figure S10 Temperature and doping level dependent transport coefficients for p-type doping.



Figure S11 Temperature and doping level dependent transport coefficients for n-type doping.

The general trend, for both p-type and n-type doping, is that the Seebeck coefficient is enhanced 

as temperature increases. This can be understood through activation of high energy carrier at higher 

temperature, similar to the energy-filtering effect4. Meanwhile, the carrier mobility at low doping 

level are significantly suppressed as a result of higher population of phonons, where electron-

phonon scattering dominates. At higher doping level, impurity scattering is stronger and competes 

with electron-phonon scattering. The temperature dependence at high doping level is therefore less 

noticeable because electron-impurity scattering is elastic and not sensitive to temperature. This 

leads to decreased conductivities as temperature increases. The combination of these effects 

towards the Seebeck coefficient and carrier mobility leads to decreased power factor at low doping 

level and increased power factor at high doping level.

Methods

First principles calculations: Electron band dispersion, phonon dispersions and electron-phonon 

couplings are calculated using the density functional perturbation theory (DFPT)5,6 with Perdew, 

Burke and Ernzerhof’s (PBE) generalized gradient approximation (GGA)7 as implemented in 

PHONON package of Quantum ESPRESSO8,9. A set of optimized norm-conserving Vanderbilt 



pseudopotentials from PseudoDojo10 are used to replace core electrons. A plane-wave cut-off 

energy of 90 Ry together with a uniform 3×3×1 Brillouin zone sampling mesh is used. A vacuum 

layer of 10 Å is used for both PTTA and its isomer to avoid interaction between periodic images. 

Then the electron energy dispersion, phonon dispersion and electron-phonon matrix elements are 

interpolated into a finer 60×60×1 mesh using maximally localized Wannier functions11,12 as 

implemented in Electron-Phonon coupling using Wannier functions (EPW)13 to evaluate the 

carrier lifetime. 

To evaluate the relaxation time from first principles, we calculated the electron lifetime due to 

electron-phonon interaction and used it to approximate electron relaxation time12 as

𝜏 ‒ 1
𝑛𝑘

=
2𝜋

ℏ𝑁𝑞
∑
𝑚𝜆𝑞

|𝑔𝑛𝑚𝜆(𝑘,𝑞)|2[(1 ‒ 𝑓 0
𝑚𝑘 + 𝑞 + 𝑛 0

𝜆𝑞)𝛿(𝜀𝑛𝑘 ‒ ℏ𝜔𝜆𝑞 ‒ 𝜀𝑛𝑘 + 𝑞) � + �(𝑓 0
𝑚𝑘 + 𝑞 + 𝑛 0

𝜆𝑞)𝛿(𝜀𝑛𝑘 + ℏ𝜔𝜆𝑞 ‒ 𝜀𝑛𝑘 + 𝑞)]
(1)

where , , , , ,  , and  stand for reduced Planck constant, number ℏ 𝑁𝑞 𝑔𝑛𝑚𝜆(𝑘,𝑞) 𝑓 0
𝑚𝑘 + 𝑞 𝜀𝑛𝑘 𝑛 0

𝜆𝑞 𝜔𝜆𝑞

of  points, electron-phonon matrix element, Fermi-Dirac distribution, electron energy, Bose-𝑞

Einstein distribution, and phonon frequency, respectively.

To estimate the impact of charged impurity scattering, we consider screened Coulombic impurity 

with effective charge . The scattering matrix elements are given by14,15𝑍 ∗ = 𝑍/𝜀𝑟

𝑀𝑛𝑘,𝑚𝑘 + 𝑞 ≈
𝑒2

4𝜋𝜖0

2𝜋
Ω �⟨𝑢𝑚𝑘 + 𝑞│𝑢𝑛𝑘⟩

|𝑞 + 𝐺| + 𝑞𝑇𝐹|𝐺 + 𝑞 ∈ 1𝐵𝑍

(2)

with , , , and ,  and  being elementary charge, vacuum permittivity, sample area, 𝑒 𝜖0 Ω 𝑘 𝑘' 𝑞𝑇𝐹

crystal momenta of initial and final states, and Thomas Fermi screening wave vector, respectively. 

The screening wave vector  is determined by the band edge density of states D0. Their 
𝑞𝑇𝐹 =

𝑒2

2𝜖0
𝐷0

contribution to scattering rate is given by

(3)
𝜏 ‒ 1

𝑛𝑘 =
2𝜋
ℏ

𝑛 ∗
𝑖 ∑

𝑚𝑞

1
𝑁𝑞

|𝑀𝑛𝑘,𝑚𝑘 + 𝑞|2(1 ‒ cos 𝜃𝑛𝑘,𝑚𝑘 + 𝑞)𝛿(𝜀𝑛𝑘 ‒ 𝜀𝑚𝑘 + 𝑞)



where the effective impurity density is ,  is the area of the first Brillouin zone, 𝑛 ∗
𝑖 = 𝑛𝑖(𝑍 ∗ )2 Ω𝐵𝑍

and  is the energy of electron with crystal momentum . The  term is taken to be 𝜀𝑘 𝑘 cos 𝜃
𝑘𝑘'

 16 while other definitions are also seen in literature15. Assuming charge neutrality in the 

𝑣𝑘 ⋅ 𝑣
𝑘'

𝑣𝑘 ⋅ 𝑣𝑘

whole system, we consider monovalent impurity with density equal to the corresponding carrier 

concentration.

Molecular dynamics: Ab initio molecular dynamics simulation was carried out using Vienna Ab 

initio Simulation Package (VASP)17. A kinetic energy cutoff of 400 eV for the plane-wave basis 

set and projector augmented-wave (PAW)18 pseudopotentials were used for all molecular 

dynamics simulations. Simulations were performed in NVT ensemble at 300 K and 600 K 

respectively. The simulation durations were 13 ps for 300 K and 6 ps for 600 K where convergence 

is achieved, and the time step size was 1 fs.

Boltzmann transport equations: To theoretically evaluate the TE performance, BTE was 

employed to calculate electrical conductivities and Seebeck coefficients. The electron velocity 

matrix is evaluated in local approximation and the diagonal part  is used to calculate the 𝑣𝑛𝑘

electrical conductivity tensor  and Seebeck coefficient tensor  in single mode relaxation time 𝜎 𝑆

approximation using19

(4)
𝜎𝛼𝛽 =

𝐺𝑠𝑒2

𝑁𝑘Ω∑
𝑛𝑘

𝑣 𝛼
𝑛𝑘𝑣 𝛽

𝑛𝑘𝜏𝑛𝑘[ ‒ �∂𝑓0(𝜀)
∂𝜀 |𝜀 = 𝜀𝑛𝑘 ‒ 𝜇]

(5)
(𝜎𝑆)𝛼𝛽 =

𝐺𝑠( ‒ 𝑒)

𝑁𝑘Ω𝑇 ∑
𝑛𝑘

𝑣 𝛼
𝑛𝑘𝑣 𝛽

𝑛𝑘𝜏𝑛𝑘[ ‒ �𝜀∂𝑓0(𝜀)
∂𝜀 |𝜀 = 𝜀𝑛𝑘 ‒ 𝜇]

Here,  and  are the components of tensor  and vector , respectively,  is spin 𝜎𝛼𝛽 𝑣 𝛽
𝑛𝑘 𝜎 𝑣𝑛𝑘 𝐺𝑠

degeneracy, and  is the number of k-points. The carrier mobility  is obtained from the ratio 𝑁𝑘 𝜇𝛼𝛽

between  and carrier concentration.𝜎𝛼𝛽

Two-dimensional effective mass model: Assuming a parabolic dispersion in two-dimensional 

system where , the density-of-states for single band is
𝜀𝑘 =

ℏ2𝑘2

2𝑚 ∗



 (6)
𝐷(𝐸) = 𝐺𝑠∑

𝑛𝑘

1
𝑁𝑘

𝛿(𝐸 ‒
ℏ2𝑘2

2𝑚 ∗ ) =
𝐺𝑠𝐴

2𝜋
|𝑚 ∗ |

ℏ2

with  being the unit cell area.𝐴

In this approximation, the transport coefficient in constant relaxation time approximation 

becomes

(7)
𝐿𝛼𝛽(𝐸) =

𝐺𝑠

𝑁𝑘Ω
𝜏∑

𝑘

𝑣𝛼
𝑘𝑣𝛽

𝑘𝛿(𝐸 ‒ 𝜀𝑘) =
𝐺𝑠𝜏

2𝜋ℏ2
𝛿𝛼𝛽𝐻(𝐸)𝐸

Here,  is the Heaviside step function. Then, we have the conductivity𝐻(𝐸)

(8)
𝜎𝛼𝛽 = 𝑒2

∞

∫
0

𝐿𝛼𝛽(𝐸)[ ‒
∂𝑓0(𝐸 ‒ 𝜇)

∂𝐸 ]𝑑𝐸 = 𝛿𝛼𝛽
𝜏𝑒2

|𝑚 ∗ |
𝑛𝑒

The corresponding Hall mobility is simply , and the Seebeck coefficient comes in a 
𝜇𝐻 =

𝜏|𝑒|

|𝑚 ∗ |
simple relation with Fermi level and temperature as

𝑆𝛼𝛽 =
1

𝑇𝑒

2𝑘𝐵𝑇 𝐿𝑖2( ‒ 𝑒
𝜇/𝑘𝐵𝑇) ‒ 𝜇𝐿𝑖1( ‒ 𝑒

𝜇/𝑘𝐵𝑇)
𝐿𝑖1( ‒ 𝑒

𝜇/𝑘𝐵𝑇)
(9)

where  is the polylogarithm function of order n.𝐿𝑖𝑛(𝑥)

Structural Information

The lattice parameters and atomic positions are given here.

PTTA:

Primitive cell vectors in Angstrom:

     7.0353830866   -9.7884874837    0.0000000000
     7.0353830866    9.7884874837    0.0000000000

          0.0000000000    0.0000000000   10.0000000000

Atomic positions in Angstrom:



    C      -0.7178783484    -6.0656306681     0.0000000000
    C       0.7178783484     6.0656306681     0.0000000000
    C       0.7178783484    -6.0656439280     0.0000000000
    C      -0.7178783484     6.0656439280     0.0000000000
    C       1.3927124686    -7.2967681616     0.0000000000
    C      -1.3927124686     7.2967681616     0.0000000000
    C      -1.3927136740    -7.2967741888     0.0000000000
    C       1.3927136740     7.2967741888     0.0000000000
    C       0.7233836410    -8.5619994130     0.0000000000
    C      -0.7233836410     8.5619994130     0.0000000000
    C      -0.7233836410    -8.5619945912     0.0000000000
    C       0.7233836410     8.5619945912     0.0000000000
    C      -1.6022306229     4.9565643297     0.0000000000
    C       1.6022306229    -4.9565643297     0.0000000000
    C       1.6022450883     4.9565848224     0.0000000000
    C      -1.6022450883    -4.9565848224     0.0000000000
    C      -2.9360568322     5.3186165800     0.0000000000
    C       2.9360568322    -5.3186165800     0.0000000000
    C       2.9360339286     5.3186153745     0.0000000000
    C      -2.9360339286    -5.3186153745     0.0000000000
    C       5.6379380192    -0.0000024109     0.0000000000
    C      -5.6379380192     0.0000024109     0.0000000000
    S      -3.9240862919     2.7300429227     0.0000000000
    S       3.9240862919    -2.7300429227     0.0000000000
    S       3.9240862919     2.7300429227     0.0000000000
    S      -3.9240862919    -2.7300429227     0.0000000000
    H      -1.2752690381     3.9193307895     0.0000000000
    H       1.2752690381    -3.9193307895     0.0000000000
    H       1.2752666272     3.9193211459     0.0000000000
    H      -1.2752666272    -3.9193211459     0.0000000000
    H       4.5469413845    -0.0000000000     0.0000000000

H      -4.5469413845     0.0000000000     0.0000000000

Isomer:

Primitive cell vectors in Angstrom:

     7.6755470172    8.6750413987    0.0000000000
    -7.6755470172    8.6750413987    0.0000000000

          0.0000000000    0.0000000000   10.0000000000

Atomic positions in Angstrom:

    C       0.7195057774     9.9001369932     0.0000000000
    C      -0.7195057774     7.4499565499     0.0000000000
    C      -0.7195057774     9.9001369932     0.0000000000
    C       0.7195057774     7.4499565499     0.0000000000



    C       1.4241209936     6.1892986110     0.0000000000
    C      -1.4241209936    11.1607949322     0.0000000000
    C      -1.4241209936     6.1892986110     0.0000000000
    C       1.4241209936    11.1607949322     0.0000000000
    C       0.7050757490     4.9772207442     0.0000000000
    C      -0.7050757490    12.3728712638     0.0000000000
    C      -0.7050757490     4.9772207442     0.0000000000
    C       0.7050757490    12.3728712638     0.0000000000
    C      -3.1807466839    12.7217816748     0.0000000000
    C       3.1807466839     4.6283103332     0.0000000000
    C       3.1807466839    12.7217816748     0.0000000000
    C      -3.1807466839     4.6283103332     0.0000000000
    C      -2.8252153461    11.3858250845     0.0000000000
    C       2.8252153461     5.9642684586     0.0000000000
    C       2.8252153461    11.3858250845     0.0000000000
    C      -2.8252153461     5.9642684586     0.0000000000
    S      -1.7592353763    13.7468264172     0.0000000000
    S       1.7592353763     3.6032671259     0.0000000000
    S       1.7592353763    13.7468264172     0.0000000000
    S      -1.7592353763     3.6032671259     0.0000000000
    H      -3.5683618083    10.5920583897     0.0000000000
    H       3.5683618083     6.7580351534     0.0000000000
    H       3.5683618083    10.5920583897     0.0000000000
    H      -3.5683618083     6.7580351534     0.0000000000
    C       1.3944933821     8.6750460040     0.0000000000
    C      -1.3944933821     8.6750460040     0.0000000000
    H       2.4825789272     8.6750460040     0.0000000000
    H      -2.4825789272     8.6750460040     0.0000000000
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