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Instrumental characterization

     Scanning electron microscopy (SEM) experiments were carried out on a Hitachi 

S-4800 microscope (Hitachi Ltd., Japan) with an accelerating voltage of 6.0 kV. The 

transmission electron microscopy (TEM) images were acquired with a Tecnai G2 20 S-

TWIN microscope (FEI Company, USA) at an accelerating voltage of 200 kV. X-ray 

photoelectron spectroscopy (XPS) characterizations were conducted on an ESCALab 

220i-XL electron spectrometer (VG Scientific Ltd., UK). The nitrogen sorption 

isotherms were obtained from 3Flex instrument (Micromeritics, USA) at 273 K. The 

small gas molecules, such as CO2 and H2O, were taken away from the samples by 

degassing for 12 h under vacuum at 120 °C. The specific surface area of the materials 

was assessed with BrunauerEmmettTeller (BET) model, while the pore size 

distribution was assessed with the non-local density functional theory (NLDFT) method. 

Carbon dioxide, nitrogen, and methane uptake experiments (0‒1.0 bar at 273 K, carbon 

dioxide also measured at 288 K) were carried out on a Micromeritics TriStarII 3020 

surface area and porosity analyzer (Micromeritics, USA). Elemental analysis results 

were obtained from a Flash EA 1112 Elemental Analyzer (Thermo Scientific, Italy). 

Thermal gravimetric analysis (TGA) was carried out on a Pyris Diamond 

thermogravimetric/differential thermal analyzer (PerkinElmer, U.S.A.). Raman spectra 

were obtained from the equipment Renishaw inVia plus (Renishaw, UK). The resistance 

of the FNPC in breakthrough experiment was conducted in a 4-point probes resistivity 

measurement system (Probes Tech, China). Before every experiments, the sample was 
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heated at 120 °C under N2 flow to desorb adventitious CO2 and water, then slowly 

cooled down to room temperature. Afterwards, the resistances of the material under 

calm breath and jogging breath were measured. The breath through experiment was 

conducted by breathing out to the material time by time, and then the resistances of the 

material were detected.
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Fig. S1. TGA curves for CF-CPOP and FNPC.
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Fig. S2. Raman spectra for CF-CPOP and FNPC.
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Fig. S3. Nitrogen adsorption‒desorption isotherms (a) and pore size distribution profiles 

(b) of FNPC-x.
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Fig. S4. CO2 uptake performances of FNPC at 298K.

S-7



0 50 100 150 200 250 300
0.0

0.2

0.4

0.6

0.8

Time (s)

R
/R

0

 

 

 Jogging breath
 Calm breath

Fig. S5. The resistivity changes of FNPC material to human exhaled gas when jogging 

breath and calm breath.
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Table S1. Chemical composition of FNPC.

Element Analysis (wt %) a XPS (wt %) b
Sample

C H N/S C O N/S

FNPC 70.5 2.1 4.0/‒ 87.5 8.4 5.1/‒

a Determined from elemental analysis results; b Determined from XPS results.
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Table S2. Comparison of carbon dioxide uptake performance (at 273 K and 1.0 Bar) of 

FNPC with the literature reported materials.

Adsorbent SBET (m2 g‒1) CO2 (wt%) Ref

NMC600-330-1 h 907 17.5 S1

HCM-DAH-1-900-1 670 21.5 S2

NMC-x 272‒664 19.3‒22.4 S3

NSC 1608 21.1 S4
HTC-K1-T8 
(activated carbon) 1013 21.5 S5

L2600
(activated carbon) 1277 23.3 S6

ZIF-8
(24 h@500 °C) 942 13.2 S7

NENU-520
(MOF) 387 15.7 S8

Bio-MOF-14 
(MOF) ‒ 18.0 S9

CPOP-1 2220 21.2 S10 

FNPC-2 1020 21.0 This Work
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Table S3. Gas uptake properties of FNPC.

273 K a 298 K a

Sample
CO2 N2 CH4 CO2

FNPC 21.0 2.0 3.5 13.7

a Data collected at 1.0 bar.
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