Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Low-temperature Interfacial Engineering for Flexible CsPbl₂Br Perovskite Solar Cells with High Performance Beyond 15%

Xia Yang ^a, Hanjun Yang ^c, Xiaotian Hu ^{*b, d}, Wenting Li ^{e, g}, Zhimin Fang ^g, Kaifeng Zhang ^f, Rui Huang ^a, Jinming Li ^a, Zhou Yang ^{*a}, Yanlin Song ^{*b}

AUTHOR ADDRESS

^a Department of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China

^b Key Laboratory of Green Printing, Institute of Chemistry Chinese Academy of Sciences (ICCAS), Beijing 100190, China

^c Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Science, Beijing Jiaotong University, Beijing 100044, China

^d Institute of Polymers and Energy Chemistry, Nanchang University, Nanchang 330031, China ^e College of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China

f Beijing Moderation Technology Co., Ltd, Beijing 100027, China ^g Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical

Fabrication (CAS), National Center for Nanoscience and Technology, Beijing 100190, China

AUTHOR INFORMATION

Corresponding Author

*E-mail for Y. S.: ylsong@iccas.ac.cn

*E-mail for X.H.: xiaotian@iccas.ac.cn

*E-mail for Y. Z.: yangz@ustb.edu.cn

Supporting Information

Experimental Sections

Materials: Zinc oxide (ZnO) and the sol-gel-derived Aluminum-doped zinc oxide (AZO) precursor solution were prepared according to the literature. ^[1, 2] High-conductivity PEDOT:PSS (hc-PEDOTPSS) was obtained by following previously reported process. ^[3] Ethanol (EtOH, anhydrous, \geq 99.9%), dimethyl sulfoxide (DMSO, anhydrous, \geq 99.9%), chlorobenzene (CB) were purchased from Sigma-Aldrich and used as received. Tin (IV) oxide (SnO₂, 15% in H₂O colloidal dispersion), cesium iodide (CsI, 99.999%), tert-butyl cyanoacetate (t-BCA, 98%), lead bromide (PbBr₂, 99.999%) were obtained from Alfa Aesar and used as received. Poly[bis(4-phenyl) (2,4,6-trimethylphenyl) amine] (PTAA, \geq 99.5%) was purchased from Xi'an Polymer Light Technology Corp and used as received. Lead iodide (PbI₂, 99.999%) was obtained from TCI and used as received.

Perovskite Solar Cell fabrication and characterization: PET substrates were cleaned by sequential ultrasonic treatment in detergent, deionized water, acetone and isopropyl alcohol, and then dried with a nitrogen stream. After 3 minutes of UV-ozone treatments, hc-PEDOT:PSS was spun coated on PET with 2000 rpm for 40 s, followed by thermal annealing at 120 °C for 15 min. The AZO solution was spun onto hc-PEDOT:PSS substrates for one time (2000 rpm, 60 s), after thermal annealing at 120 °C for 20 min in air, the substrates were transferred into glove box filled with N₂. 1.2 M Csl, 0.6 M Pbl₂ and 0.6 M PbBr₂ were dissolved in DMSO, and stirred overnight at 60 °C in a glovebox. The fully dissolved perovskite precursor solution was spun coated onto the AZO layer at 2800 rpm for 45 s and then heated at 120 °C for 10 min to form perovskite films. After the substrate cooling down to room temperature, t-BCA (1 mg/ml, CB) was spun on the perovskite film at 4500 rpm for 30 s, and thermally annealed by 100 °C for 5 min. PTAA (10 mg/mL, CB) was spun coated on passivation layer at

3000 rpm for 30 s. Finally, 6 nm MoO_3 and 80 nm Ag anode were deposited by thermal evaporation using a metal shadow mask. The device area was 0.1 cm². All devices' measurements were performed under an ambient atmosphere at room temperature.

Fabrication of Electron-only device: A thin layer of electron transport layer AZO was spincoated on a flexible electrode at 2000 rpm for 1 min, and subsequently annealed at 120 °C for 20 min. 1.2 M Csl, 0.6 M Pbl₂ and 0.6 M PbBr₂ were dissolved in DMSO, and stirred overnight at 60 °C in a glovebox. The fully dissolved perovskite precursor solution was spun coated onto the AZO layer at 2800 rpm for 45 s and then heated at 120 °C for 10 min to form perovskite films. After the substrate cooling down to room temperature, t-BCA (1 mg/ml, CB) was spun on the perovskite film at 4500 rpm for 30 s, and thermally annealed by 100 °C for 5 min. Subsequently, the PC₆₁BM (20 mg/mL in anhydrous chlorobenzene) and BCP (0.5 mg/mL in anhydrous ethanol) were then sequentially deposited by spin coating at 2000 rpm for 30 s and 4500 rpm for 60 s, respectively. Finally, 80 nm Ag anode were deposited by thermal evaporation through shadow masks.

Fabrication of Hole-only device: A thin layer of hole transport layer PEDOT:PSS CLEVIOSTM Al4083 was spin-coated on a flexible electrode at 4,000 rpm for 1 min, and subsequently annealed at 120 °C for 15 min. 1.2 M CsI, 0.6 M PbI₂ and 0.6 M PbBr₂ were dissolved in DMSO, and stirred overnight at 60 °C in a glovebox. The fully dissolved perovskite precursor solution was spun coated onto the PEDOT:PSS layer at 2800 rpm for 45 s and then heated at 120 °C for 10 min to form perovskite films. After the substrate cooling down to room temperature, t-BCA (1 mg/ml, CB) was spun on the perovskite film at 4500 rpm for 30 s, and thermally annealed by 100 °C for 5 min. PTAA (10 mg/mL, CB) was spun coated on passivation layer at 3000 rpm for 30 s. Finally, 6 nm MoO₃ and 80 nm Ag anode were deposited by thermal evaporation through shadow masks.

Device Characterization

Scanning electron microscopy (SEM) measurements were performed with an S 4800 and operated at an acceleration voltage of 5 kV. X-ray diffraction patterns (XRD) measured using D/MAX-TTRIII (CBO) with Cu K α radiation (λ =1.542 Å). UV-vis absorption spectra were recorded on a SHIMADZU, UV-2600 spectrophotometer in the 250–800 nm wavelength range at room temperature. Current density-voltage (J-V) characteristics were measured using a source meter (Keithley 2400) under 100 mW cm⁻² simulated AM 1.5 G irradiation from Abet solar simulator, the scan range is from -0.2 V to 1.3 V or from 1.3 V to -0.2 V. The steadystate photoluminescence and time-resolved photoluminescence (TRPL) were obtained using an Edinburgh instrument FLS920 spectrometer. X-ray photoelectron spectroscopy (XPS) measurements were carried out using a thermo-VG scientific ESCALAB 250 photoelectron spectrometer. The EQE was characterized by the QE-R systems (Enli Tech.). Impedance spectroscopy measurements were carried out using an LCR impedance analyzer (Keysight E4990A) under an alternating electric field of 30 mV peak-to-peak value. The repeated bending and stretching cycles were performed by a custom-made stretching machine which was actuated by a stepper motor. The thickness of the AZO was measure using a Dektak XT profilometer (Bruker).

Supporting Figures and Tables

Figure S1. Current density–voltage (J-V) curves of flexible PSCs with different ETLs under standard AM 1.5 illuminations (100 mW/cm²).

Figure S2. Ultraviolet photoelectron spectroscopy (UPS) spectra of ZnO and AZO.

Figure S3. UV-vis absorption spectra of SnO_2 , ZnO and AZO films.

Figure S4. a) UV-vis absorption spectra and b) PL spectra of ZnO and AZO films.

Figure S5. Top-viewed SEM images of Perovskite deposited on SnO, ZnO and AZO films.

Figure S6. Grain size distributions of CsPbl₂Br flms with different ETLs (at low magnification).

ETL	V _{oc}	J _{sc} (mA/cm ²)	FF (%)	PCE (%)	
SnO ₂	1.16	13.53	51.77	8.11	
ZnO	1.18	14.85	65.09	11.39	
AZO	1.25	14.94	68.37	12.74	

Table S1. Device photovoltaic performance with different ETLs under standard AM 1.5illuminations (100 mW/cm²).

Figure S7. XRD patterns of perovskite films with and without t-BCA.

Figure S8. The corresponding circuit model for the solar cells with and without t-BCA layer.

Table S2. Fitting parameters of the EIS measurment with or without t-BCA layer.

	R _s (Ω)	R _{rec} (Ω)
w/o t-BCA layer	32.78	101.2
w/w t-BCA layer	32.66	161.4

Figure S9. *J–V* curves of PSCs with different concentrations of t-BCA coated in perovskite films under standard AM 1.5 illuminations (100 mW/cm²).

Figure S10. J–V curves of PSC measured in forward and reverse scans.

Figure S11. Dark J–V curves of PSCs with different conditions.

Figure S12. PV performance statistics of the CsPbI₂Br and CsPbI₂Br/t-BCA layer based devices (30 devices).

Figure S13. The device structures of the electron-only device and the hole-only device of flexible PSCs.

Configuration	Temperature (°C)	V _{oc} (V)	J _{sc} (mA/cm²)	FF (%)	PCE (%)	Ref.
FTO/TiO ₂ /CsPbl ₂ Br/Spiro- OMeTAD/Au (rigid)	120	1.18	14.9	77.2	13.5	11
PET/ITO/Nb₅O₂/CsPbl₂Br/Spiro- OMeTAD/Au (flexible)	130	1.19	14.6	67.3	11.7	11
ITO/NiO _x /CsPbI ₂ Br/C ₆₀ /BCP/Ag (rigid)	120	1.05	12.6	78.7	10.4	12
PET/ITO/NiO _x /CsPbI ₂ Br/C ₆₀ /BCP/Ag (flexible)	120	0.97	11.5	65.0	7.3	12
ITO/PEDOT/CsPbl ₂ Br/C ₆₀ /BCP/Ag (rigid)	Room- temperature	1.16	12.4	60.1	8.67	15
PET/ITO/PEDOT/CsPbl2Br/C ₆₀ /BCP/Ag (flexible)	Room- temperature	1.05	12.0	51.4	6.50	15
PET/ITO/TiO ₂ /CsPbI _{2.85} Br _{0.15} /PTAA/Au (flexible)	-	0.96	18.73	72.8	13.14	10
FTO/c-TiO ₂ /CsPbI ₂ Br/Spiro- OMeTAD/Ag (rigid)	130	1.13	13.61	68.64	10.56	14
FTO/bl-TiO ₂ /m-TiO ₂ /CsPbl ₂ Br/PIF8- TAA /Au (rigid)	150	1.31	14.55	78.58	14.86	17
hc-PEDOT:PSS /AZO/CsPbl2Br/t- BCA/PTAA/MoO3/ Ag (flexible)	120	1.26	15.87	75.41	15.08	This work

Table S3. A summary of the detail performance parameters of reported $CsPbX_3 PSCs$ prepared at low temperature.

References

1 P. Zhang, J. Wu, T. Zhang, Y. Wang, D. Liu, H. Chen, L. Ji, C. Liu, W. Ahmad, Z. D. Chen, S. Li, Adv. Mater., 2018, **30**, 1703737.

2 X. Liu, X. Li, Y. Li, C. Song, L. Zhu, W. Zhang, H. Q. Wang, J. Fang, Adv. Mater., 2016, 28, 7405.

3 X. Hu, X. Meng, L. Zhang, Y. Zhang, Z. Cai, Z. Huang, M. Su, Y. Wang, M. Li, F. Li, X. Yao, F. Wang, W. Ma, Y. Chen, Y. Song, Joule, 2019, **9**, 2205.