Supporting Information for

A self-template approach to synthesize multicore-shell Bi@N-doped carbon nanosheets with interior void space for high-rate and ultrastable potassium storage

Xiuling Shi,^{ab} Jianshuo Zhang,^b Qianqian Yao,^b Rui Wang,^{ab} Hefeng Wu,^b Yi Zhao,^{*ab} Lunhui Guan^{*b}

^aCollege of Chemistry and materials Science, Fujian Normal University, Fuzhou,

Fujian 350007, China

^bCAS Key Laboratory of Design and Assembly of Functional Nanostructures, and

Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure

of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350108, China

*Corresponding authors

E-mail: zhaoyi@fjirsm.ac.cn, guanlh@fjirsm.ac.cn

Fig. S1 (a) XRD patterns and (b) energy dispersive X-ray spectroscopy of the BiO_x precursor.

Fig. S2 SEM (a) and TEM (b) images of Bi particles through direct calcination treatment of BiOx precursor under Ar/H_2 atmosphere reduction treatment.

Fig. S3 XRD patterns of the pure Bi.

Fig. S4 (a) Nitrogen adsorption-desorption isotherms and (b) pore size distribution curves of pure Bi.

Fig. S5 CV curves of (a) Bi@N-C and (b) Bi electrodes at a scan rate of 1 mV s^{-1} .

Fig.S6 potassium storage performance of N-doped carbon. (a) Discharge and charge profiles at 1 A g^{-1} for the initial three cycles, (b) cycling performance at 1 A g^{-1} , (c) typical discharge/charge curves under various rates, and (d) rate capabilities of N-doped carbon from 1 to 20 A g^{-1} .

Fig. S7 (a) Discharge/charge profiles, and (b) cycling stability of Bi@N-C electrode for KFP₆ in EC/PC electrolyte.

Fig. S8 Typical discharge/charge curves for selected cycles of (a-b) Bi@N-C and (c-d) Bi electrodes at current densities of (a, c) 5 A g⁻¹ and (b, d) 10 A g⁻¹.

Fig. S9 Log (*i*) versus log (*v*) plots at different oxidation and reduction states of (a) Bi@N-C and (b) Bi electrode.

Fig. S10 EIS profiles of Bi@N-C and Bi electrodes before cycle.

Anode	Curren t density (A g ⁻¹)	Cycle Number	Capacity (mA h g ⁻¹)	Rate (mA h g ⁻¹ / A g ⁻¹)	References
Bi	0.4	100	392	-	Adv. Energy Mater., 2018, 8, 1703496
Bi	0.08	50	200	-	J. Phys. Chem. C, 2018, 122, 18266
Bi	0.8	300	322	320/2	Angew. Chem. Int. Ed., 2018, 57, 4687
Bi@C	0.1	35	151	-	Chem. Sci., 2018, 9, 6193
Bi/rGO	0.05	200	~100	235/0.5	Adv. Energy Mater., 2018, 8, 1703288
Bi/G	0.5	50	240	200/10	Small, 2019, 1905789
Bi@N-C	1	100	268	152/100	Adv. Funct. Mater., 2019, 29, 1809195
Bi@3DGFs	1	400	164	113/10	J. Mater. Chem. A, 2019, 7, 4913
C@Bi	0.4	200	200	222/0.8	Matter, 2019, 1, 1427
Sb@CNFs	0.2	100	330	145/5	Angew. Chem. Int. Ed., 2019, 58, 14578
Sb@C	0.2	504	200	530/0.2	Energy Environ. Sci., 2019, 12, 615
Sb@MOF	0.1	100	497	270/1	Chem. Commun., 2019, 55, 12511
Sb@3DC	0.2	150	445	286/1	J. Mater. Chem. A, 2019, 7, 9629
Sb ₂ Se ₃ @C	0.5	400	191	174/2	J. Mater. Chem. A, 2019, 7, 12283
3DC/Sn	0.05	100	276	150/0.5	J. Mater. Chem. A, 2018, 6, 434
SnS ₂ –RGO	0.5	150	311	163/1	J. Mater. Chem. A, 2019, 7, 19332
SnS ₂ @C	1	1000	274	397/2	ChemSusChem, 2019 , 12, 2689
Sn ₄ P ₃ @C	0.5	1000	160	170/2	Joule, 2018 , 2, 1534
Sn ₄ P ₃ @C	0.5	800	181.5	184/2	Energy Storage Mater., 2019, 23, 367
SnSb@NC	0.5	200	186	117/2	J. Mater. Chem. A, 2019, 7, 14309
RP/C	1	60	300	71/3	Adv. Sci., 2019, 6, 1801354
(Bi,Sb) ₂ S ₃	0.5	1000	353	300/1	ACS Nano, 2019 , <i>13</i> , 3703
(Bi,Sb)@C	0.5	400	226	200/2	J. Mater. Chem. A, 2019, 7, 27041
Bi@N-C	1	100	356	320/10	This work
	5	500	256	266/20	
	10	1000	180	175/30	

Table S1. Electrochemical performance of alloy-based anodes for PIBs.