Ni_xFe_{1-x}B Nanoparticles Self-Modified Nanosheets as Efficient Bifunctional Electrocatalysts for Water Splitting: Experiments and Theories

Weizhao Hong, Shanfu Sun, Yi Kong, Yongyuan Hu, Gang Chen*

W. Hong, S. Sun, Y. Kong, Y. Hu and Prof. G. Chen, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, P. R. China.

Figure S1. EDS elemental spectra of Ni_xFe_{1-x}B-1, Ni_xFe_{1-x}B-2 and Ni_xFe_{1-x}B-3

Table S1. The content of Fe and NI according to EDS elemental spectra and ICF-AES analysis.				
Samples	Fe (%)		Ni (%)	
	EDS	ICP-AES	EDS	ICP-AES
$Ni_xFe_{1-x}B-1$	73	68	27	32
$Ni_xFe_{1-x}B-2$	57	48	43	52
$Ni_xFe_{1-x}B-3$	13	18	87	82

Table S1. The content of Fe and Ni according to EDS elemental spectra and ICP-AES analysis.

Figure S2. XRD patterns of FeB, $Ni_xFe_{1-x}B-1$, $Ni_xFe_{1-x}B-2$, $NixFe_{1-x}B-3$, NiB and crystal structures of FeB and NiB

Figure S3. SEM image of $Ni_xFe_{1-x}B-2$

Figure S4. (a-c) TEM images and (e) HAADF image of $Ni_xFe_{1-x}B-2$

Figure S5. TEM images of (a, b) FeB and (c, d) NiB.

Figure S6. Nyquist plots at -0.065 V vs. RHE

Figure S7. HER performance of FeB, NiB, Ni_xFe_{1-x}B in 1.0 M KOH. (a) Polarization curves, (b) Tafel plots

Site	B-top	Fe-top	Ni-top	Bridge
FeB	-0.248	0.307	N/A	-0.272
$Ni_{0.25}Fe_{0.75}B$	-0.222	0.321	0.544	-0.268
$Ni_{0.5}Fe_{0.5}B$	-0.0270	0.229	0.481	-0.247
Ni _{0.75} Fe _{0.25} B (<i>Pnma</i>)	-0.201	0.215	0.461	-0.285
NiB (Pnma)	-0.431	N/A	0.590	-0.449
Ni _{0.75} Fe _{0.25} B (<i>Cmcm</i>)	-0.486	0.284	0.629	-0.635
NiB (<i>Cmcm</i>)	-0.575	N/A	0.598	-0.584

Table S2. ΔG_{H^*} of Ni_xFe_{1-x}B (x=0, 0.25, 0.5, 0.75 and 1) with different sites and structures on (001) facet

Figure S8. Polarization curve before and after 1000 cycles of a durability test in 1 M KOH

Figure S9. XRD pattern of $Ni_xFe_{1-x}B-2$ after HER.

Figure S10. High resolution XPS spectra of (a) Ni $2p_{3/2}$, (b) Fe $2p_{3/2}$, (c) B 1s of Ni_xFe_{1-x}B-2 after HER.

Figure S11. TEM images of Ni_xFe_{1-x}B-2 after HER.

Figure S12. Electrochemical capacitance measurements to determine the surface area of the obtained electrodes in 1 M KOH. The capacitive current density on (a) FeB, (b) $Ni_xFe_{1-x}B-2$, (c) NiB from double layer charging can be measured from cyclic voltammograms with the scan rates of 20, 40, 60, 80, and 100 mV/s in a potential range where no Faradic reaction occur. d) The measured capacitive current plotted as a function of scan rate.

Figure S13. OER performance of FeB, NiB, $Ni_xFe_{1-x}B$ in 1.0 M KOH. (a) Polarization curves, (b) Tafel plots

Figure S14. Polarization curve before and after 1000 cycles of a durability test in 1 M KOH

Figure S15. XRD pattern of $Ni_xFe_{1-x}B-2$ after OER.

Figure S16. High resolution XPS spectra of (a) Ni $2p_{3/2}$, (b) Fe $2p_{3/2}$, (c) B 1s (d) O 1s of Ni_xFe_{1-x}B-2 after OER.

Figure S17. FTIR of $Ni_xFe_{1-x}B-2$ and $Ni_xFe_{1-x}B-2$ after OER.

Figure S18. TEM images of $Ni_xFe_{1-x}B-2$ after OER.

Figure S19. The amount of H_2 theoretically calculated and experimentally measured versus time in 1 M KOH.

Catalyst	$\eta_{10}(\mathrm{mV})$	Tafel slopes (mV dec ⁻¹)	Ref.
FeB ₂	61	87.5	Adv. Energy Mater. DOI:10.1002/aenm.201700513
Ni_3S_2/VS_4 nanohorn arrays	177	139	Appl. Catal. B: Environ. DOI:10.1016/j.apcatb.2019.117899
Plasma-doping NiCo LDHs	100	123	Catal. Today DOI:10.1016/j.cattod.2019.04.017
Ni ₂ P/Ni(PO ₃) ₂ /N,S-carbon nanosheet	88	65	Electrochimica Acta DOI: 10.1016/j.electacta.2019.134579
Co-E _x -MoS ₂	89	53	ACS Nano. 2018, 12, 4565.
Ni _{0.51} Co _{0.49} P film	82	43	Adv. Funct. Mater. 2016, 26, 7644
Ni _{0.89} Co _{0.11} Se ₂ MNSN/NF	85	52	Adv. Mater. 2017, 29, 1606521.
Ni ₃ S ₂ -Ni ₂ P/NF	130	77.6	Dalton Trans. 2019,48, 13466
CoP/CN@MoS ₂	149	88	ACS Appl. Mater. Interfaces DOI:10.1021/acsami.9b11859
CoFeP NFs/NPCNT	132	62.9	Nanoscale, 2019,11, 17031
Ni _x Fe _{1-x} B	63.5	56.3	This work

Table S3 Comparison of overpotentials for HER at 10 mA cm ⁻² (η_{10}) in alkaline electrolyte (1 1)	M
KOH) for Ni _v Fe _{1.v} B with other recently published highly active HER electrocatalysts	

Catalyst	η ₁₀ (mV)	Tafel slopes (mV dec ⁻¹)	Ref.
FeB ₂	296	52.4	Adv. Energy Mater. DOI:10.1002/aenm.201700513
Ni ₂ P/Ni(PO ₃) ₂ /N,S-carbon nanosheet	190	46	Catal. Today DOI:10.1016/j.cattod.2019.04.017
Plasma-doping NiCo LDHs	273	96	Electrochimica Acta DOI: 10.1016/j.electacta.2019.134579
Ni _{0.51} Co _{0.49} P	239	45	Adv. Funct. Mater. 2016, 26, 7644
NiCoP/NF	280	87	Nano Lett. 2016, 16, 7718
Co ₂ B-500	380	45	Adv. Energy Mater. 2016,6,1502313
Ni ₃ Se ₂ -GC	310	79.5	Energy Environ. Sci. 2016, 9, 1771
Mo-CoP	305	56	Nano Energy. 2018, 48, 73
FeCoP UNSAs	260	63	Nano Energy. 2017, 41, 583
CoP/CN@MoS ₂	289	69	ACS Appl. Mater. Interfaces DOI:10.1021/acsami.9b11859
CoFeP NFs/NPCNT	278	39.5	Nanoscale, 2019,11, 17031
Ni _x Fe _{1-x} B	282	86.7	This work

Table S4 Comparison of overpotentials for OER at 10 mA cm⁻² (η_{10}) in alkaline electrolyte (1 M KOH) for Ni_xFe_{1-x}B with other recently published highly active HER electrocatalysts

Catalyst	E _{j=10} (mV)	Ref.
FeB ₂	1.57	Adv. Energy Mater. DOI:10.1002/aenm.201700513
Ni_3S_2/VS_4 nanohorn arrays	1.57	Appl. Catal. B: Environ. DOI:10.1016/j.apcatb.2019.117899
Ni ₂ P/Ni(PO ₃) ₂ /(N/S)-carbon NS	1.63	Electrochimica Acta DOI: 10.1016/j.electacta.2019.134579
Co ₂ B-500-NG	1.66	ACS Catal.2017,7,469
CoSe ₂ -CC	1.63	Adv. Mater.2016,28,7527
NiCoP-NF	1.58	Nano Lett. 2016,16,7718
Ni ₃ S ₂ -Ni ₂ P/NF	1.58	Dalton Trans. 2019,48, 13466
CoP/CN@MoS ₂	1.61	ACS Appl. Mater. Interfaces DOI:10.1021/acsami.9b11859
CoFeP NFs/NPCNT	1.56	Nanoscale, 2019,11, 17031
Ni _x Fe _{1-x} B	1.57	This work

Table S5 Comparison of overpotentials for electrochemical water splitting at 10 mA cm⁻² (η_{10}) in alkaline electrolyte (1 M KOH) for Ni_xFe_{1-x}B with other recently published highly active HER electrocatalysts