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Figure S2. XPS spectra of (a) Fe 2p in Cr;oFe,/Z8C and (b) Co 2p in Cr;(Co,/Z8C.
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Figure S3. Linear sweep voltammetry curves of Cr/Z8C annealing at different temperatures (a) in 0.1 M
HCIO, solution and (b) 0.1 M KOH solution, calculated by substracting Ar-saturated solution from O,-

saturated solution at a rotation speed of 1600 rpm.
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Figure S4. Linear sweep voltammetry curves of CrjoFe,/Z8C annealing at 750°C (a) in 0.1 M HCIO4 solution

and (b) 0.1 M KOH solution, calculated by substracting Ar-saturated solution from O,-saturated solution at a

rotation speed of 1600 rpm.
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Figure S5. Linear sweep voltammetry curves of CrigFe,/Z8C annealing at different temperature (a) in 0.1 M

HCIO, solution and (b) 0.1 M KOH solution, calculated by substracting Ar-saturated solution from O,-

saturated solution at a rotation speed of 1600 rpm.
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Figure S6. (a) XRD patterns of CroFe,/Z8C annealed at different temperatures in an NH; atmosphere for 2

h; (b) XRD patterns of CrjoFe,/Z8C (x= 1, 2, 3, 4) annealed at 750°C in an NH; atmosphere for 2 h.

Figure S6a shows that clear diffraction peaks of CrN can only be found in the patterns of Cr oFe,/Z8C



annealed at 750 and 800°C, while the FeN phase can be found in the patterns of CrjoFe,/Z8C annealed at 700

and 800°C. This is probably because that Fe could be fully doped in the lattice of CrN at 750°C, as the

annealing temperature rises, the doping capacity decreases therefore the FeN phase appeared again. As shown
in Figure S6b, the Cr/Fe molar ratio higher than 10:2 resulted in the formation of FeN and Fe,N, which is very
likely that the amount of Fe surpassed the doping capacity therefore the excess Fe appeared as FeN and Fe,N.
In addition, it can be seen that the Cr/Fe molar ratio lower than 10:2 resulted in no clear diffraction peaks of
CrN. This is probably that the amount of Fe was too low to destroy the structure of ZIF-8 to form detectable

CrN crystals.
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Figure S7. Catalytic stability of CrioFe,/Z8C and Pt/C polarized at 0.7 V vs. RHE during 40,000 s in (a) 0.1
M O;-saturated HCIO4 solution and (b) 0.1 M O,-saturated KOH solution.
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Figure S8. XRD pattern of CroFe,/Z8C after stability tests.
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Figure S9. TEM images (a-c), HAADF images and EDS elemental mappings (d-h) of CrjgFe,/Z8C after

stability tests.

Table S1. Atomic contents of Cr/Z8C, CroFe,/Z8C, CroCo0,/Z8C in EDX analysis.

Atomic contents (%)

Sample
C N Cr Fe Co Cr/Fe Cr/Co
Cr/Z8C 86.71 12.74 0.55 - - - -
CryoFe,/Z8C 97.33 2.39 0.16 0.1 - 1.6 -
Cr19Co0,/Z8C 97.13 2.64 0.11 - 0.1 - 1.1

Table S2. Atomic contents of Cr/Z8C, CroFe,/Z8C, CroC0,/Z8C and N-Z8C in XPS analysis.

Atomic contents (%)

Sample
C N O Cr Zn Fe Co
Cr/Z8C 79.24 10.23 8.37 1.37 0.78 - -
CroFe,/Z8C 89.24 4.99 5.04 0.41 0.15 0.16 -
Cr0Coy/Z8C 89.22 3.71 6.37 0.22 0.17 - 0.31

N-Z8C 88.14 7.67 3.36 - 0.83 - -




Table S3. List of outstanding metal nitrides-based ORR catalysts in acidic and alkaline media.

Catalyst Electrolyte Half-wave potential (V vs. RHE) Reference
Tip3Cog,N assemblies 0.1 M HCIO4 0.79 [1]
CroFe,/Z8C 0.1 M HCI1O, 0.768 This work
Cr9Co,/Z8C 0.1 M HCIO4 0.738 This work
Cr/Z8C 0.1 M HCI1O, 0.722 This work
Tig.95Nig osN 0.1 M HCIO4 0.70 [2]
CoysMoysNy/NCNCs 0.5 M H,SO, 0.58 [3]
TiON 0.5 M H,SOy4 0.58 [4]
CopsMo; 4N, 0.1 M HCIO4 0.5 [5]
CryoFe,/Z8C 0.1 M KOH 0.901 This work
Cr;0Co,/Z8C 0.1 M KOH 0.851 This work
Tip3Cog,N assemblies 0.1 M KOH 0.85 [1]
Ti.95Nig.osN 0.1 M KOH 0.80 [2]
V0.95C0¢.0sN MFs 0.1 M KOH 0.80 [6]
Cr/Z8C 0.1 M KOH 0.797 This work
V0.95C00.0sN 0.1 M KOH 0.76 [7]
CoMoON 0.1 M KOH 0.76 [8]
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