Supporting Information

Surface States Modulation for Size-Controllable Photodeposition of Noble Metal Nanoparticles on Semiconductors

Lei Huang^a*, Xiu Liu^{a,#}, Haocheng Wu^{a,#}, Xiuli Wang^b, Hongmin Wu^a, Rengui Li^b*, Liyi Shi^a and Can Li^b

^a Research Center of Nano Science and Technology, Shanghai University, Shanghai 200444, P. R. China.

^b State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China.

[#]Both authors contributed equally to this work.

*Corresponding authors: <u>leihuang@shu.edu.cn</u> (L. Huang); <u>rgli@dicp.ac.cn</u> (R. G. Li).

Sample	Designed loading amount	Loading amount	
	(wt.%)	estimated by ICP (wt.%)	
Ag/TiO ₂ (A)-9	2.5	2.50	
Ag/TiO ₂ (A)-2	2.5	2.49	
Pt/TiO₂(A)-6	2.5	2.48	
Au/TiO ₂ (A)-6	2.5	2.47	
Pd/TiO ₂ (A)-6	2.5	2.47	

Table S1. The designed and ICP estimated loading amount

Sample	TiO ₂	Metal precursor	pH values	Size distribution
1	Anatase	AgNO ₃	2.0	4.2-72 nm
2	Anatase	AgNO ₃	4.5	10.3-39.6 nm
3	Anatase	AgNO ₃	9.0	0.6-2.3 nm, 2.9-16.9 nm
4	Rutile	AgNO ₃	2.0	7.9-128 nm
5	Rutile	AgNO ₃	6.0	0.7-2.3nm, 8-30.8 nm
6	Rutile	AgNO ₃	9.0	0.71-37.6 nm
7	Anatase	H ₂ PtCl ₆	2.0	1.3-20.2 nm
8	Anatase	H ₂ PtCl ₆	4.5	1.7-4 nm
9	Anatase	H ₂ PtCl ₆	9.0	1.1-13 nm
10	Rutile	H ₂ PtCl ₆	6.0	1.3-6 nm
11	Anatase	HAuCl ₄	4.5	2.4-34.4 nm
12	Rutile	HAuCl ₄	6.0	5.3-44.2 nm
13	Anatase	PdCl ₂	4.5	3-20.2 nm
14	Rutile	PdCl ₂	6.0	0.3-1.7nm, 2.3-9.4 nm

 Table S2 A summary of size distribution of different metal nanoparticles based on

 the size statistics results.

Samples	Surface charge	Metal Precursors	Size distribution
Ag/TiO ₂ (R)-2.0	44.6	AgNO ₃	7.9-128 nm
Ag/TiO ₂ (R)-6.0	-22	AgNO ₃	0.7-2.3 nm,
			8-30.8 nm
Ag/TiO ₂ (R)-9.0	-38	AgNO ₃	0.71-37.61 nm
Pt/ TiO ₂ (R)-6.0	-22	H_2PtCl_6	1.3-6 nm
Au/ TiO ₂ (R)-6.0	-22	HAuCl ₄	5.3-44.2 nm
Pd/ TiO ₂ (R)-6.0	-22	PdCl ₂	0.3-1.7nm,
			2.3-9.4 nm
Ag/TiO ₂ (A)-4.5	4.5	AgNO ₃	10.3-39.6 nm
Pt/ TiO ₂ (A)-4.5	4.5	H ₂ PtCl ₆	1.7-4 nm
Au/ TiO ₂ (A)-4.5	4.5	HAuCl ₄	2.4-34.4 nm
Pd/ TiO ₂ (A)-4.5	4.5	PdCl ₂	3-20.2 nm

Table S3 A summary of size distribution of different metal nanoparticles obtained with different surface charge and metal precursors.

Figure S1. The XRD patterns (a) and UV-vis spectra (b) of anatase, rutile and P25. The inset in (b) is the amplified UV-vis spectra.

Figure S2. XRD patterns of different samples: (a) $Ag/TiO_2(A)$ prepared at different pH and (b) different metals on $TiO_2(A)$ -4.5.

Figure S3. TEM and HRTEM images of (a-b) $Ag/TiO_2(R)-2$, (c-d) $Ag/TiO_2(R)-6$, (e-f) $Ag/TiO_2(R)-9$ and corresponding particle size distribution.

Figure S4. TEM images of $TiO_2(A)$ impregnation in the AgNO₃ solution (pH=9) without irradiation.

Figure S5. HRTEM images of (a-b) $Pd/TiO_2(R)$ -6.0, (c-d) $Au/TiO_2(R)$ -6.0, (e-f) $Pt/TiO_2(R)$ -6.0 and corresponding particle size distribution. The yellow circles and the arrows indicate the type I and type II nanoparticles, respectively.

Figure S6. The evolution of Ag concentration in the solution during photodeposition on $TiO_2(A)$ -2.0 and $TiO_2(A)$ -9.0.

Figure S7. TEM and HRTEM images of (a, b) Ag/TiO₂(P25), (c, d) Ag/TiO₂(anatase rod). The yellow cycles and the arrows are indicating the type I and type II Ag nanoparticles, respectively.

Figure S8. TEM images of Pt photodeposited on anatase TiO₂ at the pH of 2.0 (a, b) and 9.0 (c, d). (e-g) are the size distribution of Pt nanoparticles at the pH of 2.0, 4.5 and 9.0, respectively.

Figure S9. TEM image and size distribution of Pt on TiO_2 for different samples: (a) and (d) for 0.5 wt.% Pt/TiO₂(A)-6.0, (b) and (e) for 1.0 wt.% Pt/TiO₂(A)-6.0, (c) and (f) for 2.5 wt.% Pt/TiO₂(A)-6.0.

Figure S10. The influence of Pt loading amount for $Pt/TiO_2(A)$ at pH 6.0 on HCHO conversion at room temperature.

Figure S11 The longevity of 0.3wt.% Pt/TiO₂(A)-9 for 90 h at a total gas flow rate of 250 mL min⁻¹ and the concentration of HCHO is 300 ppm.