Supplementary information

A freestanding hierarchically structured cathode enables high

sulfur loading and energy density of flexible Li-S batteries

Jianpeng Liu,^{a,†} Zhong Li,^{a,†} Beibei Jia,^{a,†}Juncheng Zhu,^{b,*} Wenliang Zhu,^{c,*} Jianping

Li,^d Hao Pan,^d Bowen Zheng,^a Liangyin Chen,^e Giuseppe Pezzotti,^c and Jiliang Zhu^{a*}

^aCollege of Materials Science and Engineering, Sichuan University, Chengdu 610064, China.

^bSchool of Chemistry and Materials, University of Science & Technology of China, Hefei, Anhui 230026, China.

^cCeramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan.

^dAutomotive & Transportation Engineering, Shenzhen Polytechnic, Shenzhen 518055, Guangdong, China.

^eInstitute for Industrial Internet Research (I3R), Sichuan University, Chengdu 610064, China [†]These authors contributed equally to this work.

*Email address: jc1998@mail.ustc.edu.cn (JC Z), wlzhu@kit.ac.jp (WL Z), jlzhu167@scu.edu.cn (JL Z)

Supplementary Methods

Method S1. Synthesis of graphene oxide (GO)

GO nanosheets were synthesized using pre-oxidized graphite powder via an improved Hummer's method. Typically, 7.5 g P_2O_5 , 7.5 g $K_2S_2O_8$ and 9 g graphite powder were mixed in 55 mL concentrated sulfuric acid and stirred at 80°C for 5 h. The mixture was filtrated, washed with deionized water and dried overnight to obtain pre-oxidized graphite powder.

The as-prepared pre-oxidized graphite powder, together with 4.5 g NaNO₃ were dispersed in 245 mL concentrated sulfuric acid in an ice bath. Then, 27.8 g KMnO₄ was slowly added into the solution at a system temperature of below 5 °C. After 4 hours of ice bath, the mixture was transferred into a water bath of 35 °C and vigorously stirred for 4 hours. Finally, the mixture was filtrated, washed with diluted HCl and deionized water, respectively, and dried overnight to obtain GO films.

The investigated 3D graphene (3D-G) was obtained by adding ammonia and hydrazine hydrate into a mixture of anhydrous ethanol and water with dispersed GO, keeping the system at 100 °C for 2 h, and then drying up the filtrated cream in a freezer.

Method S2. Schematic illustration of soft-packaged cell assembly

Soft-packaged cells with different capacities were assembled in an Ar-filled glove box. The anode was fabricated by rolling lithium foil (250 μ m) onto Cu foil (9 μ m). Typically, the cathode and membrane were overlapped and folded into a U shape. Then the anode was inserted into the "U". The whole material was folded again and put into an Al-laminated-film bag. Electrolyte was injected and the battery was vacuumpackaged after 30 min. The same electrolyte as used in coin cell was utilized in the soft-packaged cell. The ratio of electrolyte volume (μ L) to the electrode material (S) mass (mg) was 2.9:1 in all test cells. All the cells were packaged at minus ninety kilopascals.

Fig. S1 | SEM images and EDS spectra of HM-SiO₂ (a,c) and CHM-SiO₂ (b,d). (Pt was detected due to the sputtered Pt coating on the samples for SEM measurements)

Fig. S2 | (a) TEM image of CHM-SiO₂. (b, c) HRTEM images of CHM-SiO₂.

Fig. S3 | Microscopic characterization of 3D-G. (a) SEM image of 3D-G. (b) TEM image of 3D-G.

Fig. S4 | (a) Cross-sectional SEM image of 3D-GCSS. (b) TEM image of CHM-SiO $_2$ /S on 3D-G.

Fig. S5 | SEM images of CHM-SiO₂ composited with (a) super P and (b) graphite.

Fig. S6 | Elemental mapping of (a) S, (b) Si and (c) O in the CHM-SiO₂/S composite.

Fig. S7 | Variations of solution color with the addition of 3D-GCS, 3D-G and commercial SiO_2 in an electrolyte solution of Li_2S_6 . The yellow/brown Li_2S_6 solution quickly became transparent and colorless upon adding 3D-GCS demonstrating good affinity and strong capability for LiPS-adsorption of 3D-GCS.

Fig. S8 | (a) Electrical resistance of 3D-GCSS with different sulfur loading. (b,c) Cycling performance at (b) 0.7C and (c) 1C current rates.

Fig. S9 | Cycling performances of hollow-mesoporous SiO_2/S (HM-SiO₂/S), carbonencapsulated hollow-mesoporous SiO_2/S (CHM-SiO₂/S), 3D-graphene/S (3D-G/S) and 3D-GCSS/Al.

Fig. S10 | (a,b) The 3D-GCSS electrode under force shows structural integrity and stability. (c,d) The optical images show a red LED lighted by a (c) flat and (d) bent Li–S soft-packaged cell.

Supplementary Figure 11 | The cross-sessional SEM image of the 3D-GCSS after cycling.

Supplementary Figure 12 | SEM images of the cross section of the Li anode after cycling obtained at different magnifications. (a) Scale bar, 100 μ m. (b) Scale bar, 5 μ m.

Supplementary Tables

Cathode	Rs	Rc t	W-R	W-T	W-P	СРЕ 1-Т	CPE 1-P	Ret2	СРЕ 2-Т	CPE 2-P
3D- GCSS/Al	4	79. 38	19.19	10.4	0.27 566	1.55 67E- 5	0.77 68	25.1 4	9.27 74E ⁻ 4	0.73 43
3D-GCSS	2	5	2.601	2.63 2	0.29 552	1.8 E ⁻⁴	0.70 6	0.25	1.45 4	3.28 8E ⁻¹⁰

 Table S1 | EIS fitting results of 3D-GCSS and 3D-GCSS/Al.

	5 th Cy	cling	200 th C	Capacity	
Cathode	Discharge Capacity (mAh/g)	Coulombic Efficiency (%)	Discharge Capacity (mAh/g)	Coulombic Efficiency (%)	Retention (%)
3D-GCSS/AI	1250.0	99.2	772.4	96.1	61.8
HM-SiO ₂ /S	650.3	99.8	484.5	97.3	74.5
3D-G/S	1241.0	96.5	51.2	82	4.1
CHM-SiO ₂ /S	974.3	100.0	650.6	98.6	66.8

Table S2 | Cycling performance of HM-SiO₂/S, CHM-SiO₂/S and 3D-G/S.

		Coin Cell		
Re f.	Sulfur Loading	Cycles (Cycling Rate)	Initial Capacity	Capacity Retention
5	6.2 mg/cm ²	100 (0.5mA and 1 mA/cm ² before and after 5 th)	7.8 mAh/cm ²	83%
6	5.4 mg/cm ²	200 (0.5C)	1105 mAh/g	799 mAh/g
8	56wt%	500 (1C)	1036 mAh/g	681 mAh/g
11	9.6 mg/cm ²	100	12.3 mAh/cm ²	78%
12	1 mg/cm ²	200 (0.1C)	1670 mAh/g	1142 mAh/g
14	2.5 mg/cm ²	100 (0.2C)	983 mAh/g	858 mAh/g
15	70wt%	20 (0.1C)	1400 mAh/g	More than 1000 mAh/g
16	1.1 mg/cm ²	100 (0.1C)	1264 mAh/g	866 mAh/g
17	2.9 mg/cm ²	100 (0.2C)	1396 mAh/g	844 mAh/g
18	14.36 mg/cm ²	350 (0.2C)	1000 mAh/g	645 mAh/g
19	2.0~3.0 mg/cm ²	1500 (1C)	745 mAh/g	273 mAh/g
20	1.5~2.1 mg/cm ²	50 (0.3A/g)	1278 mAh/g	1150 mAh/g
21	3.9 mg/cm ²	100 (0.2C)	1360 mAh/g	940 mAh/g
22	1.5 mg/cm ²	800 (2C)	780 mAh/g	480 mAh/g
23	1.0~2.0 mg/cm ²	200 (0.2C)	1420 mAh/g	985 mAh/g
24	$1\sim3$ mg/cm ²	100 (0.1C)	1044 mAh/g	99%
25	0.4~0.6 mg/cm ²	1000 (0.5C)	1030 mAh/g	700 mAh/g
26	4.8 mg/cm ²	100 (0.5C)	1510 mAh/g	1267 mAh/g
27	9.3 mg/cm ²	100 (0.2C)	More than 1000 mAh/g	665 mAh/g

 Table S3 | Comparisons of the references.

28	4 mg/cm ²	100 (0.2C)	600 mAh/g	570 mAh/g
29	4.7 mg/cm ²	90 (0.2C)	900 mAh/g	700 mAh/g
35	5 mg/cm ²	400 (0.34 A/g)	1500 mAh/g	841 mAh/g
37	1.3 mg/cm ²	100(0.75 A/g)	1052 mAh/g	950 mAh/g

Soft-packaged Cell

Re f.	Sulfur Loading	Cycles	Capacity	Energy Density
5	6.9 mg/cm ²	11	1Ah level	366 Wh/kg 581 Wh/L
8	_	50	1187 mAh/g	1416 Wh/kg (For Cathode)
16		30	985 mAh/g (under bending condition)	N/A
25	0.4~0.6 mg/cm ²	Discharge for over 20 h	1110 mAh/g	N/A

Cell performance of this work

Cell type	Cell parameters	Calculati	Surfer	Current	Energy density
		on item	load (mg/cm ²	density (1	(Wh/kg)
)	C=1672	
				mA/g)	
				0.50 C	2050
	Cathode surface area:		6	0.70 C	1701
	1.1 cm^2			1.00 C	973
Cain	2202 TVDE			0.50 C	1880
Com	2302 TTPE	Cathode	8	0.70 C	1566
				1.00 C	960
				0.50 C	1549
			10	0.70 C	1277
				1.00 C	534
	Cathode: 160 cm ²				
Soft-		Entire	20	0.75 mA/cm ²	371
package	Capacitance: 2.15 Ah	cell			
d Cell				0.75 mA/cm ²	1055
	Size: 4 cm×5 cm×3	Cathode	20		

		Cathode + Anode	20	0.75 mA/cm ²	782
Pouch	Cathode:	Cathode	20	0.1 C	1616
Cell	27 cm ²		(Fixed		
shown	Capacitance: 0.6 Ah		bending)		
in the	Size:		20 (Continuou		
movies	3 cm×9 cm×300 μm		s bending for		
			1000 cycles)		

Rs Rct W Rct2 CPE1 CPE2										
Cycling Condition	Rs	Ret	W-R	W- T	W-P	CPE1 -T	CPE 1-P	Rct2	СРЕ 2-Т	СРЕ 2-Р
Before dischargin g	1.28	0.38	1.22	1	0.10 5	E-4	0.85	0.15	0.01	0.8
After 1 st	1.4	1.09	0.7	8.6	0.25	1.9 E ⁻⁴	0.78	0.15	0.01	0.9
After 5 th	1.35	1.12	1.15 5	22	0.29	8E-5	0.87	0.15	0.01	0.9
After 15 th	1.1	1.15	0.5	5	0.32 5	7E ⁻⁵	0.87 9	0.54	0.2	0.32

 Table S4 | The EIS fitting results of soft-packaged cell.

				94-378-01-01-						
Mechanical bending (1200 times)										
Condition	Rs	Rct	W-R	W- T	W-P	CPE1 -T	CPE 1-P	Rct2	СРЕ 2-Т	CPE 2-P
Before bending	1.37	1.0	0.6	9	0.25	7.5E ⁻⁵	0.85	0.3	0.19	0.4
After bending	1.15	1.2	0.7	4	0.29 5	7E ⁻⁵	0.89	0.33	0.3	0.39

 Table S5 | The EIS fitting results of bending soft-packaged cell.

Supplementary Movies

Movie S1 | Exhibition of the flexibility of the freestanding 3D GCSS.

Movie S2 | Exhibition of the constant bending and folding of the Li-S softpackaged battery.

Movie S3 | Exhibition of the dynamic bending experiment of the Li-S softpackaged battery.

Movie S4 | Exhibition of 180 degrees folded 1 Ah Li-S soft-packaged battery attached on the small electric toy vehicle.

Movie S5 | Exhibition of the small electric toy vehicle driven by 1 Ah battery in a circle with a diameter of 20 cm.