Supporting information

T1/T2 Dual functional iron oxide MRI contrast agent with super stability and low hypersensitivity benefited by ultrahigh carboxyl group density

Chongchong Miao, ${ }^{a}$ Fenglin Hu, ${ }^{\text {a }}$ Yuanpeng Rui, ${ }^{\text {b }}$, Yourong Duan, ${ }^{c}$ Hongchen $\mathrm{Gu}^{*}{ }^{*}$

[^0]Table S1 Crystalline interplanar spacing of CS015 and contrast with JCPDS card No. 39-1346 and 19-0629. $\mathrm{L}=591, \mathrm{~d}=\mathrm{L} / 5 \mathrm{R}$

	sample	No.39-1346	No.19-0629	hkl
d value	2.949 ± 0.019	2.953	2.967	220
	2.531 ± 0.024	2.5177	2.532	311
	2.116 ± 0.009	2.0886	2.0993	400
	1.631 ± 0.006	1.6073	1.6158	511
	1.492 ± 0.008	1.4758	1.4845	440

Fig. S1 Conductivity titration of free carboxyl using 0.1 M NaOH with $100 \mu \mathrm{LCS} 015$ sample.

Fig. S2 ${ }^{13} \mathrm{C}$ NMR spectra of neutralized filter (a) and dialyzed neutralization filter (b) after

Fig. S3 Raw ITC thermo-gram (up) and corresponding Wiseman diagram (down) of (a) interaction between CS015 (1.5 mM COOH) under pH 5.5 and $2 \mathrm{mM} \mathrm{FeCl}_{2}$, (b) $2 \mathrm{mM} \mathrm{FeCl}_{2}$ and $\mathrm{NaOH}(\mathrm{pH}$ 8.9, same pH with 1.5 mM COOH$)$.

Obvious exothermic peaks were appeared during the reaction of Fe^{2+} with CS 015 . After CS 015 was adjusted to pH 5.5 (the same pH with Fe^{2+} at 4 mM), exothermic peaks were barely seen in Fig. S3a. Furthermore, as CS015 was replaced by NaOH with same pH in Fig. S3b, the exothermic peaks appeared again demonstrated that the exothermic peaks may have a relationship with the concentration of OH^{-}. As hydroxylation of Fe^{2+} was thermopositive, it was assumed to be hydroxylation heat of Fe^{2+} with OH^{-}and formed $\left[\mathrm{Fe}(\mathrm{OH})\left(\mathrm{OH}_{2}\right)_{5}\right]^{+} .{ }^{1}$

Table S2 Crystal structure parameters of $\mathrm{Fe}_{3} \mathrm{O}_{4}$

Compound	Crystallographic system	Space	Stacking of closed	Unit cell dimensions	Z
	group	packed anions	$\mathrm{nm}\left(\mathrm{abc} \beta^{\circ}\right)$		
Magnetite	Cubic	Fd3m	ABCABC[111]	0.8369	8

Fig. S4 The arrangement of Fe atoms on the surface of $\mathrm{Fe}_{3} \mathrm{O}_{4}$ particles.

Conformation calculation process of CS015

In this section, solid state content, Fe concentration using AAS instrument and weight loss using TGA analyzer were detected. The conformation was studied as below:

1. Percentage of $\mathrm{Fe}_{3} \mathrm{O}_{4}: \omega\left(\mathrm{Fe}_{3} \mathrm{O}_{4}\right) \%=\mathrm{C}_{\mathrm{Fe}} \times 232 /\left(56 \times 3 \times \mathrm{C}_{\mathrm{s}}\right) \times 100 \%=47.88 \%\left(\mathrm{C}_{\mathrm{s}}\right.$ was the solid state content $(63.09 \pm 0.25 \mathrm{mg} / \mathrm{mL}), \mathrm{C}_{\mathrm{Fe}}$ was $16.21 \pm 0.05 \mathrm{mg} / \mathrm{mL}, 232 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$ was the molar weight of $\mathrm{Fe}_{3} \mathrm{O}_{4}$).
2. Organic percentage: $\omega(\mathrm{org}) \%=42.71 \% \pm 2.87$ from TG result.
3. Relative organic content vs per gram $\mathrm{Fe}_{3} \mathrm{O}_{4}: \mathrm{m}(\mathrm{org})=42.71 \% / 47.88 \%=0.89 \mathrm{~g}$.
4. Molar weight of PAA chains were 1000 . The total number of PAA chains per gram $\mathrm{Fe}_{3} \mathrm{O}_{4}$ were N (chains $)=0.89 / 1000 \times 1000=0.89 \mathrm{mM}$.
5. A $5.1 \mathrm{~nm} \mathrm{Fe}_{3} \mathrm{O}_{4}$ core mass: $\mathrm{m}=\pi / 6 \times 5.1^{3} \times 5.21 \times 10^{-21}=3.61 \times 10^{-19}$, the quantity of 5.1 nm core in every gram $\mathrm{Fe}_{3} \mathrm{O}_{4}: \mathrm{N}=1 / \mathrm{m} /\left(6.02 \times 10^{23}\right) \times 1000=4.60 \times 10^{-3} \mathrm{mM}$. There were $0.89 / 4.60 \times 10^{-3}=193$ PAA chains on every core. The grafting density was calculated to be 193/81.6=2.35 chains/ nm^{2}. 6. Crystal structure of $\mathrm{Fe}_{3} \mathrm{O}_{4}$ was inverse spinel and the parameters of the crystal were summarized in Table $\mathrm{S} 2 .{ }^{2}$ According to the inverse spinel structure, the arrangement of Fe atoms on the surface of $\mathrm{Fe}_{3} \mathrm{O}_{4}$ particles was plotted in Fig. S4. The area of every orthogon was $(0.8369 / 2)^{2}=0.176 \mathrm{~nm}^{2}$ and the amount of orthogons on the surface of a $5.1 \mathrm{~nm} \mathrm{Fe} 3_{3} \mathrm{O}_{4}$ core was $81.6 / 0.176=464$. Therefore, the amount of Fe atoms on a $5.1 \mathrm{~nm} \mathrm{Fe}_{3} \mathrm{O}_{4}$ core surface was 464 .
6. The amount of COOH on every PAA chain that chelated with surface Fe was $464 / 193=2.40$.

Combining the analyzed data with crystal structure of $\mathrm{Fe}_{3} \mathrm{O}_{4}$, we deduced that the number of COOH in one PAA chains that chelating with surface Fe atoms was about 3. As repeated unit length of PAA was $0.25 \mathrm{~nm}^{3}$ and the number of COOH one PAA chain was $1000 / 72=14(72$ $\mathrm{g} \cdot \mathrm{mol}^{-1}$ was the molar weight of acrylic acid). If COOH that coordinated with Fe atoms was equally distributed in one PAA chain (every 3 COOH), the length of particle would be $5.1+3 \times 0.25 \times 2 / 2=5.75 \mathrm{~nm}<18 \mathrm{~nm}$ (Number diameter), which was much smaller than Number diameter detected by DLS. Hence, the distribution of COOH was unequally on the particles surface and we deduced a "brush-like" conformation.

References

1. J. P. Jolivet, C. Chanéac and E. Tronc, Chem. Commun., 2004, 477-483.
2. R. J. Hill, J. R. Craig, G. V. Gibbs, Phys. Chem. Minerals, 1979, 4, 317-339.
3. X. Guo and M. Ballauff, Langmuir : the ACS journal of surfaces and colloids, 2000, 16, 8719-8726.

[^0]: *Corresponding autho - Hongchen Gu hcgu@sjtu.edu.cn
 ${ }^{\text {a }}$ Nano Biomedical Research Center, School of Biomedical Engineering \& MED-X Research Institute, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, P.R. China
 ${ }^{\mathrm{b}}$ Department of Radiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine,

 Shanghai 200062, China
 ${ }^{\text {c }}$ State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji

