Supporting information

Anthracene functionalized BODIPY derivative with singlet oxygen storage ability for photothermal and continuous photodynamic synergistic therapy

Jianwei Zhu^{ab}, Jianhua Zou^b, Jie Zhang^a, Yang Sun^a, Xiaochen Dong^{b*}, Qi

Zhang^{a*}

^aSchool of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South

Puzhu Road, Nanjing 211816, China.

*Email: *zhangqi@njtech.edu.cn*

^bKey Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials

(IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials

(SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing

211816, China.

*E-mail: *iamxcdong@njtech.edu.cn*

Figure S1 Synthetic route of BDPIA. (I) a) 2,4-dimethylporrole, DCM. b) NEt₃, BF₃·OEt₂. (II) NIS, CHCl₃/HOAc (3:1) rt. (c) anthracene-9-carbaldehyde, AcOH, piperidine, DMF, 150 °C, 6 h

Figure S2 (a) Singlet oxygen generation of MB using DPBF as a probe. (b) Linear fitting of the degradation of DPBF.

Figure S3 MTT assay of BDPIA NPs with or without light irradiation (660 nm, 0.2W/cm²)

Figure S4 Photograph of the mice of (a) Control (b) Without irradiation group (c) With

irradiation groups after treatment.