Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2019

Supporting Information

An Efficient Biosensor for Monitoring Alzheimer's Disease Risk Factors:

Modulation and Disaggregation of Aβ Aggregation Process

Siyue Ma, ^a, [‡] Jiabao Qiang, ^a, [‡] Linyang Li, ^a Yan Mo, ^a Mengyao She, ^a, ^b Zheng Yang, ^c Ping Liu, ^a Shengyong Zhang, ^a and Jianli Li ^a, *

^a Ministry of Education Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry & Materials Science, Northwest University, TaiBai North Road 229, Xi'an, Shaanxi Province, 710127, PR China.

^bKey Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, The College of Life Sciences, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province, 710069, PR China.

^c School of Chemistry & Chemical Engineering, Xi'an University of Science and Technology, Yanta Road 58, Xi'an, Shaanxi Province, 710054, PR China.

*Corresponding Author: E-mail: lijianli@nwu.edu.cn

* Siyue Ma and Jiabao Qiang contributed equally to this work.

1. Experimental

1.1 Crystal growth and conditions

White single crystals of the probes were obtained at room temperature from the mixed solvents of CHCl₃-CH₃CN solution by slow evaporation and then mounted on the goniometer of single crystal diffractometer. The crystal data were collected at 296 K by using Mo K α radiation by using ϕ/ω scan mode and collected for Lorentz and polarization effect (SADABS). The structures were solved using the direct method and refined by full-matrix least-squares fitting on F² by SHELX-97.

1.2 UV-visible and fluorescence spectral measurements

The stock solutions of the probes were prepared in 100 μ mol/L in EtOH-PBS (5:5, v/v) solution. The solutions of the ions were also performed with the salts including KCl, CaCl₂, NaCl, MgCl₂·6H₂O, AlCl₃, ZnCl₂·6H₂O, FeCl₃, SnCl₄, PbCl₂, HgCl₂, AgNO₃, NiCl₂·6H₂O, CoCl₂·6H₂O, FeCl₂, MnCl₂·5H₂O, CrCl₃, BaCl₂·2H₂O, and CuCl₂·2H₂O in EtOH-PBS (5:5, v/v) as 500µmol/L. To determine the spectra properties of the probes, 1.00 mL of the 100 µmol/L solution of the probes, different concentration Cu²⁺ were added to the 10 mL volumetric tubes and diluted to the mark with EtOH-PBS (5:5, v/v) solution. The Absorptions were recorded at 553 nm, and the fluorescence intensities were recorded at 580 nm for both probes with the excitation wavelength at 540 nm.

1.3 Cell imaging

The MCF-7 human breast cancer cell were cultured in Dulbecco's Modified Eagle Medium (DMEM) supplemented with 10% heat in activated fetal bovine serum (FBS) in the humidified atmosphere with 5% CO₂ at 37°C. The cells were cultured for 6 h in treatment conditions until plated on confocal dish. The growth medium was then removed, and the cells were washed with DMEM without FBS and incubated with 50 μ mol/L of the probes for 1 h at 37 °C, then washed three times with PBS and imaged. Then the cells were supplemented with 50 μ mol/L Cu²⁺ in the growth medium for 30 minutes at 37 °C and imaged. Finally, the cells were supplemented with 50 μ mol/L H₂S in the growth medium for 30 minutes at 37 °C and imaged. Bright field and fluorescence images of MCF-7 cells were obtained using an Olympus FV1000 confocal microscope (excited at 543 nm).

1.4 Living mice imaging

Kunming mice were divided into two groups to image Cu^{2+} and H_2S in live mice by subcutaneous injection. The one group was three mice: the first one was given 50 µmol/L probes, the second one was injected with 50 µmol/L probes and then 5 µmol/L CuCl₂, the last one was given 50 µmol/L probes and then 50 µmol/L CuCl₂. The second group was three mice: the first one was given 50 µmol/L probes, the second one was injected with 50 µmol/L probes and then 50 µmol/L CuCl₂, the last one was given 50 µmol/L probes, the second one was injected with 50 µmol/L probes and then 50 µmol/L CuCl₂, the last one was given 50 µmol/L probes, 50 µmol/L CuCl₂ and 50 µmol/L H₂S. Mice were imaged at 0, 1, 5, 10, 20 minutes after a skin-pop injection by using a PerkinElmerLumina LT Serios III, with an excitation of 540 nm and an emission of 580 nm. The study was conducted in accordance with the Experimental Animal Administration regulations issued by the State Committee of Science and Technology of the People's Republic of China.

1.5 Computation details

The Density functional theory (DFT) calculations of the ground state of the probe **S1-S3** and probes-Cu were performed with B3LYP functional with Gaussian 09 Program. The optimization of probe S1-S3 state and probes-Cu state were performed with a basis set consisting of $6-31G^*$ for C, H elements, $6-31 + G^{**}$ for O, N, Cl elements and DGDZVP for Cu element. The environmental effect was included via PCM model with ethanol as the solvent environment.

2. Calculation of the detection limit of probe S1-S3

$$LOD = \frac{3\sigma}{k}$$

 σ is the standard deviation of the blank solution and k is the slope of the linear calibration plot between the fluorescence intensity and the concentration of Cu²⁺. The calculated LOD of probe **S1-S3** are showed in **Table S-1**.

Table S1. The calculated LOD of probe S1-S3								
		Probe	S 1	S2	S 3			
	LOD	FL(nmol/L)	1.95	1.51	6.62			

3. Calculation of the detection limit of probe-Cu²⁺

$$LOD = \frac{3\sigma}{k}$$

 σ is the standard deviation of the blank solution and k is the slope of the linear calibration plot between the fluorescence intensity and the concentration of H₂S. The calculated LOD of probe-Cu²⁺ are showed in **Table S2**.

Table S2. The calculated LOD of probe-Cu				
Probe	S1	S2	S3	-

LOD FL(nmol/L) 14.8 10.6 16.1

4. Association constant of Cu²⁺ and probe S1-S3

The association constant was determined by Benesi-Hildebrand method as follows:

Probe **S1** is taken as an example. Because of a 1:1 stoichiometry for interaction between probe **S1** and Cu^{2+} , the equilibrium is given by following equation:

$$S1 + nCu^{2+} \longleftrightarrow S1 \bullet nCu^{2+} (1)$$

The association constant (k) is therefore expressed as:

$$k = \frac{[S1 \bullet nCu^{2+}]}{[S1][Cu^{2+}]^n} = \frac{[S1 \bullet nCu^{2+}]}{([S1]_0 - [S1 \bullet nCu^{2+}])([Cu^{2+}]_0 - n[S1 \bullet nCu^{2+}])^n}$$
(2)

 $[S1 \cdot nCu^{2+}]$, [S1], and $[Cu^{2+}]$ represent the equilibrium concentrations of the complex, free S1, and free Cu^{2+} , respectively. $[S1]_0$ and $[Cu^{2+}]_0$ are the initial concentrations of S1 and Cu^{2+} , respectively. If $[Cu^{2+}]_0 >> [S1 \cdot nCu^{2+}]$, the Eq. 2 can be simplified as follows:

$$k = \frac{[S1 \bullet nCu^{2+}]}{([S1]_0 - [S1 \bullet nCu^{2+}])[Cu^{2+}]_0^n}$$
(3)

Eq. 3 is transformed to:

$$\frac{1}{[S1 \bullet nCu^{2+}]} = \frac{1}{k[S1]_0[Cu^{2+}]_0^n} + \frac{1}{[S1]_0}$$
(4)

Fluorescence intensity is given as follows:

$$F_{0} = k_{0}[S1]_{0} (5)$$

$$F = k_{0}[S1]_{0} + k_{\infty}[S1 \bullet Cu^{2+}] (6)$$

$$F_{\max} = k_{0}[S1]_{\max} + k_{\infty}[S1 \bullet Cu^{2+}]_{\max} (7)$$

where, F_0 is the fluorescence intensity of **S1**, F is the fluorescence intensity of **S1** obtained with Cu²⁺, F_{max} is the fluorescence intensity of **S1** in the presence of excess amount of Cu²⁺. By means of Eqs. 5, 6 and 7, the following equation is obtained:

$$\frac{F_{\max} - F_0}{F - F_0} = \frac{[S1 \bullet nCu^{2+}]_{\max}}{[S1 \bullet nCu^{2+}]}$$
(8)

In the presence of excess amount of Cu^{2+} , $[S1 \cdot nCu^{2+}]_{max}$ is almost equal to $[S1]_0$. The Eq. 8 can be replaced as follows:

$$\frac{F_{\max} - F_0}{F - F_0} = \frac{[S1]_0}{[S1 \bullet nCu^{2+}]}$$
(9)

Using Eq. 4 and 9, the Benesi-Hildebrand equation is obtained as:

$$\frac{1}{F - F_0} = \frac{1}{K(F_{\text{max}} - F_0)[Cu^{2+}]_0^n} + \frac{1}{F_{\text{max}} - F_0}$$
(10)

where, F_0 is the fluorescence intensity of **S1**, F is the fluorescence intensity obtained with Cu²⁺, F_{max} is the fluorescence intensity obtained with excess amount of Cu²⁺, k is the binding constant, and $[Cu^{2+}]_0$ is the concentration of Cu²⁺ added. Therefore, the binding constant is obtained of 6.05×10^6 , 24.13×10^6 , 7.70×10^6 for **S1**, **S2** and **S3**, respectively.

5. Optical properties of probe S1-S3

Fig. S1 Absorption and fluorescence spectra of S1-S3 (10 μ mol/L) in EtOH-PBS (5:5, v/v) solution upon addition of various metal ions (20 μ mol/L), $\lambda_{ex} = 540$ nm.

Fig. S2 Absorption of linear of probe S1-S3 (10 μ mol/L) with 0.1-8 μ mol/L Cu²⁺, and fluorescence intensity of linear of probe S1-S3 (10 μ mol/L) with 0.1-10 μ mol/L Cu²⁺, $\lambda_{ex} = 540$ nm.

Fig. S3 Time-dependent responses of **S1-S3** with Cu²⁺ in EtOH-PBS (5:5, v/v) solution, $\lambda_{ex} = 540$ nm.

Fig. S4 Absorption and fluorescence spectra of probe-Cu²⁺ (10 μ mol/L) in EtOH-PBS (5:5, v/v) solution upon addition of various species (20 μ mol/L), $\lambda_{ex} = 540$ nm.

Fig. S5 Absorption of linear of probe-Cu²⁺ (10 μ mol/L) with 0-8 μ mol/L H₂S, and fluorescence intensity of linear of probe-Cu²⁺ (10 μ mol/L) with 0-10 μ mol/L H₂S, $\lambda_{ex} = 540$ nm.

Fig. S6 Fluorescence changes of **S1-S3** at 580 nm upon alternate addition of Cu^{2+} and H_2S in the solution (5:5, v/v, EtOH: PBS, pH 7.4).

Fig. S7 Fluorescence intensity of **S1-S3** in the absence and presence of 1.0 equiv. of Cu²⁺ in EtOH-PBS (5/5, v/v) solution with different pH conditions, $\lambda_{ex} = 540$ nm. The concentration of probe **S1-S3** are 10 µmol/L, and the concentration of Cu²⁺ is 10 µmol/L.

6. Mechanism of S1 responding to Cu²⁺

Fig. S8 IR of S1 and S1 + $CuCl_2$

Fig. S9 Job's plot of S1 with Cu²⁺ in EtOH-PBS (5:5, v/v) solution, $\lambda_{ex} = 540$ nm.

Fig. S10 Mass spectrum of $S1 + CuCl_2$

7. Theoretical computation

Fig. S11 The optimized structure of the probe S1-S3 and the complex S1-S3-Cu²⁺.

8. Cell survival rate

Fig. S12 MTT assay of living cells in the presence of different concentrations of S1-S3 for 24 h.

9. Blood-brain barrier permeability experiment

Fig. S13 High performance liquid chromatography experiment of S1 and brain tissue.

Fig. S14 IR spectrum of S1 in KBr disks.

Mass Spectrum SmartFormula Report

Analysis Info

Analysis Name C:\Users\wzh\Desktop\MASS\2 Method tune_low 50-500.m Sample Name Comment Acquisition Date 2015/5/26 10:20:31

Operator NWU Instrument / Ser# micrOTOF-Q II 10280

Acquisition Parameter

Fig. S17 ¹³C NMR spectrum of S1 in DMSO.

Mass Spectrum SmartFormula Report

Analysis Info

Analysis Name C:\Users\wzh\Desktop\lijianli-804-3.d Method tune_low 50-500.m Sample Name Comment Acquisition Date 2015/12/10 9:25:21

Operator NWU Instrument / Ser# micrOTOF-Q II 10280

Fig. S21 ¹³C NMR spectrum of S2 in DMSO.

Fig. S22 IR spectrum of S3 in KBr disks.

Fig. S23 Mass spectrum of S3.

