Supporting Information

Capture and Elimination *Staphylococcus aureus* based on Langmuir-Blodgett MnO₂ Nanowire Monolayer promote infected wound healing

Bolei Chen, Fang Ji, Chang Wang, Yue Gao, Zhen Zhou, Zhi Li, Huiming Cao, LitengHao, Guangliang Liu, Jingfu Liu, Yong Liang*

Figure S1. The UV-vis spectra of pure IgG, manganese dioxide nanowires monolayer and IgG modified manganese dioxide nanowires monolayer.

Figure S2. Typical optical microscopy images of the Gram stained bacteria captured by MnO_2 substrate.

Figure S3. (**A**) Schematic design of MnO₂-sacrificed methodto break the interaction between the immobilized bacteria and MnO₂ nanowires monolayer. (**B**) The corresponding bacteria plate counting results for correlation between concentration of oxalic acid and bacteria viability.

Figure S4. (**A**) The corresponding optical microscopy image of bacteria captured at concentration of 100 mL⁻¹ (bacteria number per mL). (**B**) The corresponding optical microscopy image of bacteria captured at concentration of 1000 mL⁻¹ (bacteria number per mL). (**C**) The corresponding optical microscopy image of bacteria captured at concentration of 100 mL⁻¹ (bacteria number per mL).

Figure S5. The corresponding optical images of selectivity for bacteria including B. subtilis, E. coli, and S. aureus.

Figure S6. The contrast fluorescence images of bacteria captured on TBBPA embedded PDMS membrane without MnO₂ nanowire monolayer and corresponding IgG surface modification(Green: total bacteria, Red: dead bacteria).

Figure S7. The contrast fluorescence images of bacteria captured on bare PDMS membrane without TBBPA, MnO₂ nanowire monolayer and corresponding IgG surface modification(Green: total bacteria, Red: dead bacteria).

Figure S8. Histopathological examination of mouse wound surface, Hematoxylin-eosin staining, x200 magnification.