## **Supporting Information**

## Constructing peptide-based artificial hydrolase with customized selectivity

Mingjie Zhu,<sup>a</sup>, Mengfan Wang,<sup>\*ab</sup> Wei Qi, <sup>abc</sup> Rongxin Su<sup>abc</sup> and Zhimin He<sup>a</sup>

<sup>a.</sup> School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300350, P. R. China. E-mail: mwang@tju.edu.cn

<sup>b.</sup> The Co-Innovation Centre of Chemistry and Chemical Engineering of Tianjin, Tianjin 300072, P. R. China.

<sup>c.</sup> Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300350, P. R. China.



**Figure S1**. SEM images of (A) SA-FF and (B) SA-H. (C) Plots of absorbance at 400 nm vs time for the hydrolysis of *p*-NPA.



**Figure S2**. The hydrolytic rates of SA-H (left) and AMIP-H (right) toward *p*-NPA, *p*-NPB and *p*-NPH.



**Figure S3**. The catalytic activity ( $V_0$ ) of AMIP-H that washed by different concentration/pH of NaOH solution.

The highest catalytic activity of AMIP-H was obtained when using 2 mM of NaOH solution (pH11.3) as elution solution. When the concentration of eluent is lower than 2 mM (pH<11.3), imprinting template cannot be completely removed and the catalytic activity of AMIP-H is unfavorable. When increasing the concentration of eluent (pH>11.3), the polymer is destroyed under the high alkaline condition, which also decreases the catalytic activity. As a result, 2 mM of NaOH solution was used to elute imprinting templates.



Figure S4. The catalytic mechanism of peptide nanofibers.

|                                                                                                                           | Enzyme | V                           | k.                          | K                           | k ./K                                      |  |  |
|---------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------|-----------------------------|-----------------------------|--------------------------------------------|--|--|
| Substrate                                                                                                                 |        | (μM/min)                    | $(10^{-3} \text{min}^{-1})$ | (mM)                        | $(10^{-3} \text{min}^{-1} \text{mM}^{-1})$ |  |  |
| p-NPA                                                                                                                     | SA-H   | $20.2\pm 1.71$              | $4.04\pm0.34$               | $7.79\pm 0.70$              | $5.27 \pm 0.82$                            |  |  |
|                                                                                                                           | NIP-H  | $17.6 \pm 1.53$             | $3.56\pm0.56$               | $4.28\pm 0.70$              | $8.38 \pm 0.43$                            |  |  |
|                                                                                                                           | AMIP-H | $\underline{20.6\pm0.82}$   | $\underline{4.12 \pm 0.16}$ | $\underline{2.66} \pm 0.28$ | $15.5 \pm 0.40$                            |  |  |
|                                                                                                                           | BMIP-H | $16.9 \pm 1.38$             | $3.68\pm0.28$               | $5.96\pm0.60$               | $6.27 \pm 0.47$                            |  |  |
|                                                                                                                           | HMIP-H | $14.7 \pm 1.67$             | $3.58 \pm 1.02$             | $4.86 \pm 0.59$             | $7.36\pm0.44$                              |  |  |
| <i>p</i> -NPB                                                                                                             | SA-H   | $5.61 \pm 0.35$             | $1.12 \pm 0.41$             | $3.74~\pm0.85$              | $3.34\pm0.33$                              |  |  |
|                                                                                                                           | NIP-H  | $3.17 \pm 0.48$             | $0.64\pm\!0.09$             | $1.04 \pm 0.27$             | $6.54 \pm 0.30$                            |  |  |
|                                                                                                                           | AMIP-H | $5.44 \pm 1.67$             | $0.89 \pm 0.33$             | $1.14 \pm 0.22$             | $7.84 \pm 0.43$                            |  |  |
|                                                                                                                           | BMIP-H | $3.93 \pm 0.70$             | $\underline{0.79} \pm 0.14$ | $\underline{0.83} \pm 0.29$ | $11.2 \pm 0.58$                            |  |  |
|                                                                                                                           | HMIP-H | $3.63\pm\!0.26$             | $0.35 \pm 0.03$             | $0.96 \pm 0.09$             | $7.85 \pm 0.23$                            |  |  |
| <i>p</i> -NPH                                                                                                             | SA-H   | $3.31 \pm 0.69$             | $0.66\pm0.14$               | $3.55 \pm 0.17$             | 1.93 ±0.29                                 |  |  |
|                                                                                                                           | NIP-H  | $4.54\pm\!0.63$             | $0.91 \pm 0.19$             | $3.81 \pm 0.27$             | $2.63 \pm 0.27$                            |  |  |
|                                                                                                                           | AMIP-H | $4.79\pm\!0.45$             | $0.96\pm0.09$               | $2.55 \pm 0.28$             | $3.84 \pm 0.37$                            |  |  |
|                                                                                                                           | BMIP-H | $4.24\pm\!0.22$             | $0.85 \pm 0.13$             | $2.61\ \pm 0.37$            | $3.87 \pm 0.44$                            |  |  |
|                                                                                                                           | HMIP-H | $\underline{1.92} \pm 0.08$ | $\underline{0.35\pm 0.05}$  | $0.62 \pm 0.06$             | $5.65 \pm 0.27$                            |  |  |
| $^{a}V_{max}$ is the maximal reaction velocity, $k_{cat}$ is the catalytic constant, $k_{cat} = V_{max}/[E]$ , [E] is the |        |                             |                             |                             |                                            |  |  |
| molar concentration of Fmoc-FFH, and $K_{\rm m}$ is the Michaelis constant,                                               |        |                             |                             |                             |                                            |  |  |

**Table S1.** Catalytic parameters of the SA-H and other imprinted hydrogels for hydrolysis of p-NPA, p-NPB and p-NPH<sup>a</sup>

| Catalyst        | Substrate     | Conditions <sup>a</sup>         | V <sub>0</sub><br>(µM/min) <sup>a</sup> | Reference                               |
|-----------------|---------------|---------------------------------|-----------------------------------------|-----------------------------------------|
| Au@E3H15        | <i>p-</i> NPA | Tris-HCl buffer                 | 0.54                                    | Mikolajczak <i>et al</i> . <sup>1</sup> |
|                 |               | рН 7.3, 25 °С                   |                                         |                                         |
|                 |               | $C_{\rm pep} = 0.05 \ {\rm mM}$ |                                         |                                         |
|                 |               | $C_{\rm sub} = 0.5 \text{ mM}$  |                                         |                                         |
|                 | p-NPA         | PBS buffer                      | 0.85                                    | Zhang <i>et al.</i> <sup>2</sup>        |
| 011D/II         |               | рН 7.4, 25 °С                   |                                         |                                         |
| QIIK/H          |               | $C_{\rm pep} = 0.2 \ \rm mM$    |                                         |                                         |
|                 |               | $C_{\rm sub} = 0.5 \text{ mM}$  |                                         |                                         |
| PepNTs-His-Arg  | p-NPA         | HEPES buffer                    | 2.44                                    | Huang et al. <sup>3</sup>               |
|                 |               | pH 8.0, 25 °C                   |                                         |                                         |
|                 |               | $C_{\rm pep} = 0.1 \mathrm{mM}$ |                                         |                                         |
|                 |               | $C_{\rm sub} = 0.5 \text{ mM}$  |                                         |                                         |
| CNT             | <i>p-</i> NPA | Tris-HCl buffer                 | 1.32                                    | Zhang <i>et al</i> . <sup>4</sup>       |
|                 |               | рН 8.0, 37 °С                   |                                         |                                         |
| $(SHE/W)_{2:1}$ |               | $C_{\rm pep} = 3.5 \ \mu g/mL$  |                                         |                                         |
|                 |               | $C_{\rm sub} = 2.6 \text{ mM}$  |                                         |                                         |
|                 |               | PBS buffer                      | 1.71                                    | Gulseren <i>et al.</i> <sup>5</sup>     |
| D/H/S           | n NDA         | рН 7.4                          |                                         |                                         |
| D/11/5          | <i>p</i> -MPA | $C_{\rm pep} = 0.1 \mathrm{mM}$ |                                         |                                         |
|                 |               | $C_{\rm sub} = 1 { m mM}$       |                                         |                                         |
|                 | p-NPA         | HEPES buffer                    | 11.52                                   | Wang <i>et al.</i> <sup>6</sup>         |
| SA-H            |               | рН 7.5, 35 °С                   |                                         |                                         |
| 5A-11           |               | $C_{\rm pep} = 0.5 \mathrm{mM}$ |                                         |                                         |
|                 |               | $C_{\rm sub} = 5 \mathrm{mM}$   |                                         |                                         |
|                 |               | PBS buffer                      | 7.68                                    | This study                              |
| AMIP-H          | n-NPA         | pH 8.0, 25 °C                   |                                         |                                         |
| 2 MVIII -11     | <i>p</i> -mrA | $C_{\rm pep} = 0.5 \mathrm{mM}$ |                                         |                                         |
|                 |               | $C_{\rm sub} = 1  \rm mM$       |                                         |                                         |

 Table S2. Comparison of hydrolytic activity of some peptide-based artificial enzymes.

<sup>a</sup>The reaction conditions and  $V_0$  values are cited directly from the original reference.

## References

- 1. D. J. Mikolajczak, J. L. Heier, B. Schade and B. Koksch, Biomacromolecules, 2017, 18, 3557-3562.
- C. Zhang, X. Xue, Q. Luo, Y. Li, K. Yang, X. Zhuang, Y. Jiang, J. Zhang, J. Liu, G. Zou and X.-J. Liang, ACS Nano, 2014, 8, 11715-11723.
- 3. Z. P. Huang, S. W. Guan, Y. G. Wang, G. N. Shi, L. N. Cao, Y. Z. Gao, Z. Y. Dong, J. Y. Xu, Q. Luo and J. Q. Liu, *Journal of Materials Chemistry B*, 2013, **1**, 2297-2304.
- 4. Q. Zhang, X. He, A. Han, Q. Tu, G. Fang, J. Liu, S. Wang and H. Li, *Nanoscale*, 2016, 8, 16851-16856.
- 5. G. Gulseren, M. A. Khalily, A. B. Tekinay and M. O. Guler, *Journal of Materials Chemistry B*, 2016, 4, 4605-4611.
- 6. M. Wang, Y. Lv, X. Liu, W. Qi, R. Su and Z. He, ACS Applied Materials & Interfaces, 2016, 8, 14133-14141.