Mechanically robust and flexible PEGylated poly(glycerol

sebacate)/ β -TCP nanoparticles composite membrane for

guided bone regeneration

Shuang Yu^{1,2#}, Jun Shi^{3#}, Yutong Liu^{1,2}, Jiawen Si^{3*}, Yuan Yuan^{1,2*},

Changsheng Liu^{1,2}

¹ Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science

and Technology, Shanghai 200237, PR China

². School of Materials Science and Engineering, East China University of Science and Technology,

Shanghai 200237, PR China

³ Department of Oral and Craniomaxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China

[#] The first two authors contributed equally to this work.

*Corresponding Author:

E-mail address: yyuan@ecust.edu.cn (Yuan Yuan); sjwlyl@163.com

(Jiawen Si)

Fig. S1 (A) ¹H-NMR spectra and (B) FITR spectra of PEGS20 prepolymer.

Fig. S2 (A) SEM image (scale bar: 1 μ m) and (B) XRD pattern of β -TCP.

Element	unn.C [wt.%]			norm.C [wt.%]			Atom.C [at.%]		
	P20T10	P20T50	P20T90	P20T10	P20T50	P20T90	P20T10	P20T50	P20T90
Calcium	1.91	11.30	26.95	65.32	67.87	69.71	59.28	59.28	62.01
Phosphorus	1.01	5.35	11.71	34.68	32.13	30.29	40.72	40.72	37.09
Total	2.92	16.65	38.66	100.00	100.00	100.00	100.00	100.00	100.00

Table. S1 Quantitative analysis of EDS spectrum.

Fig. S3 The sol content of PEGS/ β -TCP composite membranes after immersion in THF

for 3 days (n = 3, ***p < 0.001).

Fig. S4 Swelling behavior of PEGS/ β -TCP composite membranes in PBS.

The variation of pH value and Ca²⁺ release during cell cultivation were also studied in vitro. In brief, membrane samples were immersed in cell culture medium (α -MEM, HyCloneTM, USA) and placed in a constant temperature incubator shaker (37 °C, 80 RPM). At different time points, the pH value of culture medium was measured by pH meter (FE20, Mettler Toledo, Switzerland) and Ca²⁺ release was analyzed by inductively coupled plasma atomic emission spectrometer (ICP-AES, Varian 710-ES, Agilent, USA). The medium was refreshed every 2 days in accordance with the renewal of culture medium for in vitro cell culture.

Fig. S5 (A) Change of pH value in culture medium after soaking the PEGS/ β -TCP composite membranes for 14 days with medium refreshed every 2 days. Neutralization effect was enhanced with the increase of β -TCP content. (B) Concentration of calcium ions released from the PEGS/ β -TCP composite membranes for 14 days with medium refreshed every 2 days. The maximum dose could be detected in P20T50 group.