## **Electronic Supplementary Information**

## A dual-aptamer biosensor for specific detection of breast cancer biomarker HER2 *via* flower-like nanozymes and DNA nanostructures

Dan Ou,<sup>a</sup> Duanping Sun,<sup>\*ab</sup> Xiangan Lin,<sup>c</sup> Zhixian Liang,<sup>a</sup> Yongsheng Zhong,<sup>d</sup> Zuanguang Chen<sup>\*a</sup>

<sup>a</sup> School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China

<sup>b</sup> Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China

<sup>c</sup> Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China

<sup>d</sup> East Campus Lab Center, Sun Yat-Sen University, Guangzhou 510006, China

\* Corresponding authors.

E-mail: sundp@gdpu.edu.cn (D.P. Sun), chenzg@mail.sysu.edu.cn (Z.G. Chen).



**Figure S1.** (A) X-ray photoelectron spectroscopy (XPS) spectrum of Pd@Pt NPs. (B) High-resolution XPS spectra of Pd 3d. (C) High-resolution XPS spectra of Pt 4f.



**Figure S2.** (A) Energy dispersive X-ray spectrum (EDS) of  $Mn_3O_4$  NPs collected on a field emission scanning electron microscope (FE-SEM). (B) XPS spectrum of  $Mn_3O_4$  NPs. (C) Highresolution XPS spectra of Mn  $2p_{3/2}$  and Mn  $2p_{1/2}$  photoelectron peaks. (D) High-resolution XPS spectra of O 1s photoelectron peaks.



**Figure S3.** Photograph of characterization of catalytic activity of nanomaterials (The tubes were (1) catalase (10  $\mu$ g/mL) + H<sub>2</sub>O<sub>2</sub> (20 mM), (2) Mn<sub>3</sub>O<sub>4</sub> NPs (50  $\mu$ g/mL) + H<sub>2</sub>O<sub>2</sub> (20 mM), (3) Pd@Pt NPs (50  $\mu$ g/mL) + H<sub>2</sub>O<sub>2</sub> (20 mM), and (4) H<sub>2</sub>O<sub>2</sub> (20 mM) as the blank, respectively, were reacted at 25 °C.).



Figure S4. (A) Evolution of zeta potentials during the  $Mn_3O_4/Pd@Pt$  NPs nanocomposite assembly processes. (B) UV-vis spectra of remainder  $H_2O_2$  after reaction with  $Mn_3O_4$  NPs, Pd@Pt NPs and  $Mn_3O_4/Pd@Pt$  NPs.



**Figure S5.** Agarose gel electrophoresis analysis of TDN-aptamer 1. Lane 1: A; Lane 2: A+B; Lane 3: A+B+C; Lane 4: A+B+C+D; Lane 5: DNA ladder marker.



**Figure S6.** (A) Electrochemical impedance spectroscopy of (a) bare GE, (b) TDN-aptamer 1/GE, (c) MCH/TDN-aptamer 1/GE, (d) HER2/MCH/TDN-aptamer 1/GE, (e) nanoprobe 1/HER2/MCH/TDN-aptamer 1/GE, (f) nanoprobe 2/ nanoprobe 1/HER2/MCH/TDN-aptamer 1/GE in 0.5 M KCl solution containing 5 mM  $[Fe(CN)_6]^{4-/3-}$  (impedance spectral frequency 0.1-10<sup>5</sup> Hz, amplitude 10 mV).

| Name      | Sequence (ssDNA direction: $5' \rightarrow 3'$ ) |
|-----------|--------------------------------------------------|
| A         | HS-                                              |
|           | TATCACCAGGCAGTTGACAGTGTAGCAAGCTGTAA              |
|           | TAGATGCGAGGGTCCAATAC                             |
| В         | HS-                                              |
|           | TCAACTGCCTGGTGATAAAACGACACTACGTGGGA              |
|           | ATCTACTATGGCGGCTCTTC                             |
| С         | HS-TTCAGACTTAGGAATGTGCTTCCCACGTAGTGTCG           |
|           | TTTGTATTGGACCCTCGCAT                             |
| D         | ACATTCCTAAGTCTGAAACATTACAGCTTGCTACACG            |
|           | AGAAGAGCCGCCATAGTATTTTTTTTTTT <u>AATTAAGCC</u>   |
|           | <u>GCGAGGGGAGGGATAGGGTAGGGCGCGGCT</u>            |
| Aptamer 2 | HS-GCAGCGGTGTGGGGGGGCAGCGGTGTGGGGGGCAGC          |
|           | GGTGTGGGG                                        |
|           |                                                  |
| cDNA      | HS-TTTTTCCCCACACCGCTGC                           |

Table S1 Detailed information of the ssDNA sequence

The underlined sequence of the D presents the aptamer 1 region.