Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B.

This journal is © The Royal Society of Chemistry 2019

Supporting information for:

A Highly Specific Fluorescence Probe for Rapid Detection of Hypochlorous Acid *in vivo* and in Water Samples

Huan Feng,^{‡a} Yue Wang,^{‡a} Jianping Liu,^b Zhiqiang Zhang,^a Xinyi Yang,^a Rong Chen,^a Qingtao Meng^{a*} and Run Zhang^{b*}

^a School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning, 114051, P. R. China.

E-mail: qtmeng@ustl.edu.cn, Tel: +86-412-5929627

^b Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, 4072, Australia.

E-mail: r.zhang@uq.edu.au, Tel: +61-7-33463806

[‡] These authors contributed equally to this work and they should be regarded as co-first authors.

Scheme S1 Synthetic procedure of the fluorescence probe, PI.

Fig. S1 ¹H NMR of PI (CDCl₃).

Fig. S2 ¹³C NMR of PI (CDCl₃).

Fig. S3 HR MS of PI.

Fig. S4 FTIR spectrum of PI.

Fig. S5 Fluorescence intensities of **PI** (10 μ M) and P (10 μ M) at different time in PBS aqueous buffer (DMSO: H₂O = 9:1, 20 mM, pH = 7.4). Excitation at 440 nm.

Fig. S6 HR MS of PI in the presence of HOCl.

Fig. S7 HR MS of PI in the presence of more amount of HOCl.

Fig. S8 HPLC chromatogram of P, PI in the (a) absence and (b) presence of HOCl.

Fig. S9 The fluorescence intensity changes at 551 nm of PI (5 μ M) as a function of HOCl concentration (0-17.0 μ M). Excitation was performed at 440 nm.

Fig. S10 (A) Absorption spectra and (B) fluorescence response of **PI** (10 μ M) towards various biological cations (60 μ M) in PBS buffer (DMSO:H₂O=9:1, v/v; pH 7.4). The cations include: 1. blank, 2. Al³⁺, 3. Fe³⁺, 4. Cr³⁺, 5. Ag⁺, 6. Li⁺, 7. Co²⁺, 8. Cu²⁺, 9. Cd²⁺, 10. Ca²⁺, 11. Mg²⁺, 12. Ba²⁺, 13. K⁺, 14. Na⁺, 15. HOC1. The excitation and emission wavelength are 440/551 nm.

Fig. S11 Changes in fluorescence colour of **PI** (10 μ M) in the presence of various analytes (60 μ M) in PBS aqueous buffer (DMSO: H₂O = 9:1, 20 mM, pH = 7.4): (1) Free **PI**, (2) HOCl, (3) Br⁻, (4) AcO⁻, (5) Cl⁻, (6) F⁻, (7) HSO₃⁻, (8) HSO₄⁻, (9) S²⁻, (10) NO₂⁻, (11) NO₃⁻, (12) ¹O₂, (13) ·OH, (14) ONOO⁻, (15) P₂O₇⁴⁻, (16) PO₄³⁻, (17) SO₃²⁻, (18) HCO₃⁻, (19) Pi, (20) PPi, (21) H₂O₂, (22) Cys, (23) Hcy and (24) GSH.

Fig. S12 Cytotoxicity of PI towards HeLa cells estimated by MTT assay.

Fig. S13 Fluorescence imaging of exogenous HOCl in live nude mouse. (a) **PI** (50 μ M, 125 μ L) was subcutaneously injected into the right leg of mouse, followed by the injection of 20 μ L HOCl (20 mM) to the area of interest. Images were recorded at different times: (b) 0 min; (c) 10 min; (d) 20 min; (e) 30 min; (f) 40 min; (g) 50 min and (h) 60 min, respectively. (j) The mean fluorescence intensities of areas of interest at different time showing in (a-h). The left hind limbs were injected with **PI** only as the control group. The mouse was imaged with excitation filter (465 nm) and emission filter (610 nm).

Fig. S14 Photographs of colour responses of the **PI**-based test papers exposured to different concentration of HOCl in pure water: (a) 0 mM, (b) 0.05 mM, (c) 0.1 mM, (d) 0.5 mM and (e) 1.0 mM. (A) Under visible light, (B) under UV light (365 nm).

Table S1. Some recently reported fluorescent probes for HOCl detection.

Probes	Detection limit	Linearity range	Colour changes	Ex/Em (nm)	Response time	In vivo sensing	Preparation and application of probe-based chromatography plates or paper	Ref.
SeCy7	0.31 µM	10-60 μM	No study	690/7 86	dozens of seconds	Exogenous and endogenous HOCl in nude mice	No study	1
НСТе	41.3 nM	1-10 µM	No study	480/5 31	< 200 s	No study	No study	2
FBS	0.2 μΜ	0–1.0 μM	No study	428/5 93	quickly (no data)	Detection of DUOX- dependent HOCl induction in the intestinal epithelia of Drosophila.	No study	3
complex 1	down to 1 <i>ppm</i>	No study	No study	346/5 87	No study	No study	naked-eye detectable under UV light (365 nm) irradiation by the test paper of 1	4
BRCIO	1.95 μM and 0.59 μM for ratio measurem ent and intensity	0–100 μM	disappearance of the pink color	480/5 05,58 5	within 1 s	No study	Test strips for qualitative detection of HOCl in natural tap water	5
probe 1a	0.5 μΜ	0.5-5 μΜ	No study	480/5 32	Within 30 min	No study	No study	6
BDP-OX	0.85 µM	No study	No study	488/5 38,58 9	within 15s	No study	No study	7
Lyso- BHHBB- Eu3þ;Mi to- BHHBB-	<15 nM	0–10 μM	No study	328/6 07; 333/6	within 5 s	Monitoring of HOCl uptake in Daphnia magna.	No study	8

Eu3þ

07

Cy- HOCl	10 nM	0-45 μΜ	No study	543/6 25	about 15 min	In acute ischemia zebrafish and nude mice model	No study	9
RO610	2.88× 10 ⁻⁸ M	0–20 µM	No study	535/5 77	within 30 s	Exogenous and endogenous HOCl in nude mice	No study	10
TCBT- OMe	0.16 nM	0-0.7 μΜ	No study	310/4 72	within 10 s	No study	Test strips for qualitative detection of HOCl in natural tap water under UV light (365 nm).	11
MBTC	4.6 nM	0-1.0 μΜ	colorless to blue	620/6 90	In one minute	No study	No study	12
TPP- TCF	0.29 µM	0-10 μΜ	No study	488/6 60	within 30 seconds	endogenous HOCl in nude mice	No study	13
S- BODIPY	59 nM	0-70 μΜ	No study	540/5 87,61 9	within 30 s	Exogenous and endogenous HOCl in zebrafish; imaging of endogenous HOCl in an acute liver injury mouse model	No study	14
PL-HA	6.2× 10 ⁻⁸ M	0-25 μΜ	No study	365/5 25	100 s	No study	No study	15
QYMTC and QEMTC	29.3 nM and 17.8 nM	0–125 μM; 0– 110μM	yellow to green; yellow to blue	580/7 00 630/7 20	within 30 seconds	No study	No study	16
QCIO	89 nM	0.8–16.5 μM	No study	426/5 62,49 2	within 60 seconds	Tracking HOCl in wounded tissues of mice	No study	17
Gal-NPA	0.46 nM	0 to 1 µM	colorless to yellow	470/5 58	within 3 s.	No study	No study	18
PI	47 nM	3-34 µM	pink to pale yellow	440/5 51	within 1 minute	 endogenous HOCl production in zebrafish; exo-/endogenous HOCl in live nude mouse visualisation of HOCl-mediated RA in mammals in live nude mouse 	Quantitative analysis of HOCl in nature water samples by PI -based test chromatography plates with the naked eye	This work

References

- [1] G. Cheng, J. Fan, W. Sun, J. Cao, C. Hu and X. Peng, Chem. Commun., 2014, 50, 1018–1020
- [2] P. Venkatesan and S.-P. Wu, Analyst, 2015, 140, 1349–1355.
- [3] Q. Xu, K.-A. Lee, S. Lee, K. M. Lee, W.-J. Lee and J. Yoon, J. Am. Chem. Soc., 2013, 135, 9944–9949.

- [4] N. Zhao, Y.-H. Wu, R.-M. Wang, L.-X. Shi and Z.-N. Chen, Analyst, 2011, 136, 2277–2282.
- [5] J. Fan, H. Mu, H. Zhu, J. Du, N. Jiang, J. Wang and X. Peng, Ind. Eng. Chem. Res., 2015, 54, 8842-8846.
- [6] X. Jina, Y. Jia, W. Chen, P. Chui, Z. Yang, Sensors and Actuators B, 2016, 232, 300–305.
- [7] J. Kang, F. Huo, Y. Yue, Y. Wen, J. Chao, Y. Zhang, C. Yin, Dyes and Pigments, 2017, 136, 852–858.
- [8] H. Ma, B. Song, Y. Wang, C. Liu, X. Wang and, J. Yuan, Dyes and Pigments, 2017, 140, 407–416.
- [9] Y. Huang, N. He, Y. Wang, L. Zhang, Q. Kang, Y. Wang, D. Shen, J. Choo and L. Chen, *J. Mater. Chem. B*, 2019, **7**, 2557–2564.
- [10] Y. Zhang, L. Ma, C. Tang, S. Pan, D. Shi, S. Wang, M. Li and Y. Guo, J. Mater. Chem. B, 2018, 6, 725-731.

[11] L. Wu, Q. Yang, L. Liu, A/ C. Sedgwick, A. J. Cresswell, S. D. Bull, C. Huang and T. D. James, *Chem. Commun.*, 2018, **54**, 8522–8525.

- [12] J. Sun and F. Feng, Analyst, 2018, 143, 4251-4255.
- [13] X. Wang, J. Min, W. Wang, Y. Wang, G. Yin and R. Wang, Analyst, 2018, 143, 2641–2647.
- [14] C. Duan, M. Won, P. Verwilst, J. Xu, H. S. Kim, L. Zeng and J. S. Kim, Anal. Chem., 2019, 91, 4172-4178.
- [15] M. Ren, Z. Li, J. Nie, L. Wang and W. Lin, Chem. Commun., 2018, 54, 9238-9241.
- [16] P. Xing, Z. Zhang, Y. Niu, Y. Qi, L. Dong and C. Wang, Chem. Commun., 2018, 54, 9889–9892.
- [17] Z. Mao, M. Ye, W. Hu, X. Ye, Y. Wang, H. Zhang, C. Li and Z. Liu, Chem. Sci., 2018, 9, 6035–6040.

[18] Q. Duan, P. Jia, Z. Zhuang, C. Liu, X. Zhang, Z. Wang, W. Sheng, Z. Li, H. Zhu, B. Zhu and X. Zhang, *Anal. Chem.*, 2019, **91**, 2163–2168.