Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2019

Supporting information

Detection of target collagen peptides with single amino acid mutation using two fluorescent peptide probes

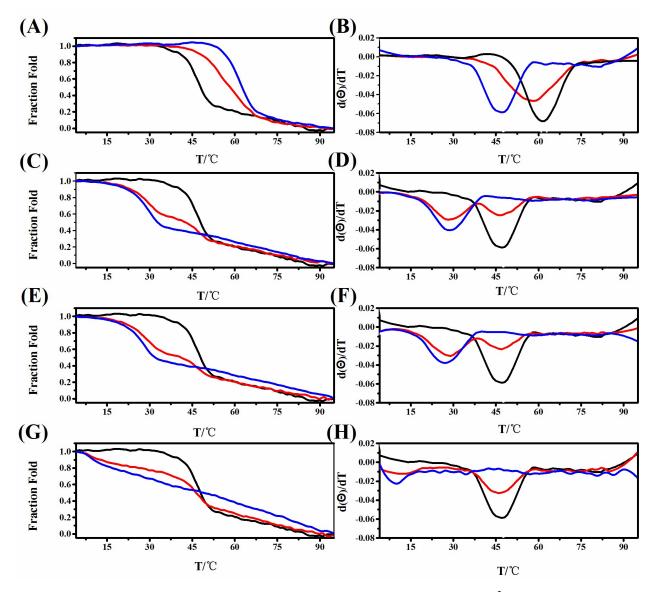

Xiuxia Sun, Linyan Yao, Caihong Fu, Liting Luo, Jie Wang, Jianxi Xiao

Table S1. Design of the probe and target host-guest peptides.

Туре	Amino Acid Sequence	Function
\mathbf{P}^1	$FAM-G(POG)_{10}$	Probe
P ²	FAM-G(PRGPOG) ₅	
G	G(POG) ₄ POG(POG) ₅	
A	G(POG) ₄ POA(POG) ₅	Host-guest
S	$G(POG)_4POS(POG)_5$	
R	$G(POG)_4POR(POG)_5$	

Figure S1. CD characterization of the mixtures of the probe peptide P^1 hybridized with various mutation peptides. CD thermal transitions (A) and the first derivative (d(MRE)/dT) (B) of the thermal transition curves of homotrimer P^1 (black), homotrimer A (blue) and the $1P^1:2A$ mixture (red). CD thermal transitions (C) and the first derivative (d(MRE)/dT) (D) of the thermal transition curves of homotrimer P^1 (black), homotrimer S (blue) and the $1P^1:2S$ mixture (red). CD thermal transitions (E) and the first derivative (d(MRE)/dT) (F) of the thermal transition curves of homotrimer P^1 (black), homotrimer R (blue) and the $1P^1:2R$ mixture (red). The mixtures of peptide P^1 and each mutation peptide at a molar ratio of 1:2 (300 μ M:600 μ M) were prepared in 20 mM PBS buffer, pH 7.4, heated at 90 °C for 20 min, and then incubated at 4 °C for >24 hrs to drive the formation of heterotrimer. Solutions of each peptide alone were treated in a similar manner to produce homotrimers. Melting transitions were monitored by CD spectroscopy at 225 nm.

Figure S2. CD characterization of the mixtures of the probe peptide P^2 hybridized with the target peptides. CD thermal transitions (A) and the first derivative (d(MRE)/dT) (B) of the thermal transition curves of homotrimer P^2 (black), homotrimer G (blue) and the $1P^2$:2G mixture (red). CD thermal transitions (C) and the first derivative (d(MRE)/dT) (D) of the thermal transition curves of homotrimer P^2 (black), homotrimer A (blue) and the $1P^2$:2A mixture (red). CD thermal transitions (E) and the first derivative (d(MRE)/dT) (F) of the thermal transition curves of homotrimer P^2 (black), homotrimer S (blue) and the $1P^2$:2Smixture (red). CD thermal transitions (G) and the first derivative (d(MRE)/dT) (H) of the thermal transition curves of homotrimer P^2 (black), homotrimer R (blue) and the $1P^2$:2R mixture (red). The mixtures of peptide P^2 and each target peptide at a molar ratio of 1:2 (300)

 μ M:600 μ M) were prepared in 20 mM PBS buffer, pH 7.4, heated at 90 °C for 20 min, and then incubated at 4 °C for >24 hrs to drive the formation of heterotrimer. Solutions of each peptide alone were treated in a similar manner to produce homotrimers. Melting transitions were monitored by CD spectroscopy at 225 nm.