Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Mitochondria targeting two-photon fluorescent molecules for

gene transfection and biological tracking

Wan Sun,^a Xu-Ying Liu,^a Jing-Xue Cui,^a Le-Le Ma,^a Yuan Zhang^b, Zhong-Lin Lu,^{a*} Lan He^{b*}

^a Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
^b National Institute for Food and Drug Control, Beijing, 100050, China
*Corresponding authors: luzl@bnu.edu.cn (Zhong-Lin Lu), helan1961@aliyun.com (Lan He)

Contents

1.	Syn	thes	es
----	-----	------	----

- 2. UV-vis Spectra of 1, 2, 3
- 3. Fluorescence lifetime of 1, 2, 3
- 4. Two photon absorption cross-section values of 1, 2, 3
- 5. Water solubility of 1, 2, 3
- 6. Photo-stability and pH-stability of 1, 2, 3
- 7. Cytotoxicity of 1, 2, 3
- 8. Laser confocal imaging of compounds 1, 2 and 3
- 9. RFP expression of 1/CPPs; 2/CPPs; 3/CPPs, CPPs
- 10. Transfection efficiencies of pGL-3 DNA by 1/CPPs, 2/CPPs, 3/CPPs
- **11. Photo-physical properties**
- 12. Spectra data of compounds synthesized
- 13. References

1. Syntheses

Synthesis of 1

(E)-4-(2-(Benzo[d]thiazol-2-yl)vinyl)-*N*, *N*-bis(4-iodophenyl)aniline (**1a**) (0.3 g, 0.51 mmol), Pd(PPh₃)₄ (58mg, 0.05mmol), CuI (10mg, 0.05mmol), and propargyl-[12]aneN₃ (0.83 g, 2.0 mmol) ¹ (4 equiv.) in triethylamine (15 mL) were added via a syringe under inert gas to a round-bottomed flask and the reaction mixture was stirred at 50 °C for 48 h. After removing the solvent under vacuum, the crude liquid product was then purified by flash column chromatography, eluting with petroleum ether and ethyl acetate to give yellow crystals (0.10 g, yield 21%). ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, *J* = 8.0 Hz, 1H), 7.84 (d, *J* = 7.7 Hz, 1H), 7.56 (d, *J* = 8.3 Hz, 2H), 7.48 – 7.41 (m, 4H), 7.32 (t, *J* = 11.4 Hz, 4H), 7.03 (dd, *J* = 17.8, 8.3 Hz, 4H), 6.86 (d, *J* = 8.3 Hz, 2H), 3.57 (s, 2H), 3.31 (d, *J* = 8.7 Hz, 8H), 2.58 (s, 4H), 1.82 (d, *J* = 8.0 Hz, 6H), 1.45 (s, 18H). ¹³C NMR (101 MHz,) δ 167.25, 156.40, 154.00, 147.95, 146.62, 146.40, 138.59, 136.91, 134.36, 133.04, 130.77, 130.23, 128.66, 126.80, 126.64, 126.40, 126.22, 125.50, 125.32, 124.20, 123.98, 123.65, 123.17, 122.90, 121.56, 120.78, 118.31, 87.10, 85.18, 83.84, 79.32, 50.28, 46.11, 44.27, 40.74, 28.61, 26.99, 26.88, 26.10. HRMS-ESI: *m/z* calcd. [M+H]⁺ for C₄₉H₅₈IN₅O₄S⁺, 938.3176; found, 938.3182.

Compound **1b** (0.22 g, 0.23 mmol) was added to a saturated hydrogen chloride solution of ethyl acetate (5 mL) and the mixture was stirred for 5 h at room temperature. The resulting suspension was filtrated and the solid was washed with ethyl acetate, then dried in vacuum at 60 °C for 24 h. A red solid as compound **1** was obtained in 0.15 g (86%). 1H NMR (400 MHz,) δ 8.08 (d, *J* = 6.0 Hz, 1H), 7.96 (d, *J* = 6.2 Hz, 1H), 7.67 (dd, *J* = 26.3, 17.0 Hz, 6H), 7.47 (d, *J* = 43.0 Hz, 4H), 7.03 (s, 4H), 6.90 (s, 2H), 3.74 – 3.53 (m, 2H), 3.171 – 2.68 (m, 12H), 2.08 – 1.85(m, 6H).¹³C NMR (126 MHz, DMSO-*d*₆): δ 167.35, 153.96, 147.68, 146.40, 139.04, 138.97, 137.26, 134.62, 133.63, 129.71, 128.57, 127.43, 127.02, 125.85, 124.03, 122.85, 122.66, 121.01,

88.77, 49.66, 47.52, 21.58, 19.39, 18.22. HRMS-ESI: *m/z* calcd. [M+H]⁺ for C₃₉H₄₁IN₅S⁺, 738.2127; found, 738.2138.

Synthesis of 2

According to the same procedure, 0.16g of **1b**–**2** was obtained, yield: 30% ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, J = 8.2 Hz, 1H), 7.86 (d, J = 7.8 Hz, 1H), 7.52 – 7.42 (m, 4H), 7.40 – 7.28 (m, 6H), 7.07 (d, J = 8.4 Hz, 2H), 7.03 (d, J = 8.4 Hz, 4H), 3.59 (s, 4H), 3.42 – 3.18 (m, 16H), 2.59 (s, 8H), 1.95 – 1.72 (m, 12H), 1.44 (d, J = 14.8 Hz, 36H). ¹³C NMR (126 MHz, CDCl₃): δ 167.23, 156.34, 153.91, 147.93, 146.38, 136.90, 134.28, 132.94, 130.93, 130.64, 130.14, 128.86, 128.57, 126.33, 125.43, 125.24, 124.27, 123.74, 122.81, 121.49, 120.66, 118.21, 85.15, 83.71, 79.26, 71.80, 50.17, 46.03, 44.19, 40.64, 29.71, 28.54, 28.50, 27.73, 26.82, 26.00, 19.18. HRMS-ESI: m/z calcd. [M+H]⁺ for C₇₁H₉₅N₈O₈S⁺, 1219.6994; found, 1219.6978.

Compound **1b-2** (0.20 g 0.17 mmol) was added to a saturated hydrogen chloride solution of ethyl acetate (5 mL) and the mixture was stirred for 5 h at room temperature. The resulting suspension was filtrated and the solid was washed with ethyl acetate, dried in vacuum at 60 °C for 24 h. A red solid as compound **2** was obtained in 0.13 g (90%). ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.09 (d, *J* = 7.4 Hz, 1H), 7.96 (d, *J* = 8.1 Hz, 1H), 7.76 (s, 2H), 7.64 (d, *J* = 16.5 Hz, 2H), 7.53 (d, *J* = 14.9 Hz, 2H), 7.42 (d, *J* = 6.7 Hz, 4H), 7.05 (s, 6H), 3.74 (s, 4H), 3.50 (s, 4H), 3.32 – 3.04 (m, 15H), 2.90 (s, 5H), 2.22 (s, 2H), 2.07 (s, 5H), 1.85 (s, 5H). ¹³C NMR (126 MHz, DMSO-*d*₆): δ 167.10, 153.92, 147.99, 147.57, 137.93, 137.22, 134.42, 133.63, 132.56, 132.00, 131.04, 129.74, 129.32, 128.63, 127.03, 125.87, 124.48, 122.87, 122.66, 121.14, 60.26, 53.90, 49.78, 47.49, 43.02, 41.34, 40.98, 31.79, 28.43, 21.58, 21.29, 20.60, 19.66, 19.40, 18.21, 14.60. HRMS-ESI: *m/z* calcd. [M+H]⁺ for C₅₁H₆₃N₈S⁺, 819.4896; found, 819.4897.

Synthesis of 3

According to the similar procedure, 0.04 g (0.058 mmol) of **2a** resulted in 0.19 g of the compound **2b** as yellow crystals (58%). ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, *J* = 8.0 Hz, 2H), 7.86 (d, *J* = 7.8 Hz, 2H), 7.53 – 7.44 (m, 8H), 7.35 (d, *J* = 7.9 Hz, 6H), 7.12 (d, *J* = 8.4 Hz, 4H), 7.07 (d, *J* = 8.3 Hz, 1H), 3.59 (s, 2H), 3.33 (d, *J* = 7.2 Hz, 8H), 2.60 (s, 4H), 1.85 (d, *J* = 5.6 Hz, 7H), 1.47 (s, 18H). ¹³C NMR (126 MHz, CDCl₃): δ 167.68, 167.19, 156.35, 153.93, 147.82, 146.31, 136.86, 134.31, 133.03, 132.41, 131.35, 130.91, 130.50, 128.86, 128.76, 128.64, 126.34, 125.27, 124.63, 124.16, 122.84, 121.49, 120.85, 118.57, 85.16, 83.88, 79.28, 71.80, 68.47, 50.22, 46.07, 44.26, 40.75, 31.93, 29.70, 29.66, 29.37, 28.55, 28.47, 27.74, 26.88, 26.04, 22.70, 22.19, 19.17, 14.12. HRMS-ESI: *m/z* calcd. [M+H]⁺ for C₅₈H₆₃N₆O₄S₂⁺, 971.4352; found, 971.4344.

Compound **2b** (0.073 g 0.075 mmol) was added to a saturated hydrogen chloride solution of ethyl acetate (5 mL) and the mixture was stirred for 3 h at room temperature. The resulting suspension was filtrated and the solid was washed with ethyl acetate, dried in vacuum at 60 °C for 24 h. A red solid as compound **3** was obtained in 0.05 g (86%). ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.09 (d, *J* = 7.7 Hz, 2H), 7.96 (d, *J* = 7.9 Hz, 2H), 7.77 (d, *J* = 8.3 Hz, 4H), 7.67 (s, 2H), 7.63 (s, 1H), 7.53 (dd, *J* = 15.9, 9.0 Hz, 4H), 7.47 – 7.39 (m, 3H), 7.11 (dt, *J* = 13.9, 7.4 Hz, 6H), 3.75 (s, 2H), 3.12 (dd, *J* = 88.1, 56.7 Hz, 12H), 1.97 (d, *J* = 84.1 Hz, 6H). ¹³C NMR (126 MHz, DMSO-*d*₆): δ 167.10, 153.96, 147.63, 146.68, 137.23, 134.43, 133.54, 132.06, 130.94, 129.72, 129.17, 128.60, 127.00, 125.83, 124.66, 124.52, 124.40, 122.94, 122.88, 122.63, 121.07, 71.62, 49.81, 47.51, 43.02, 41.32, 29.49, 27.68, 21.60, 19.58, 19.36, 18.22. HRMS-ESI: *m/z* calcd. [M+H]⁺ for C₄₈H₄₇N₆S₂⁺, 771.3304; found, 771.3304.

2. UV-vis Spectra of 1, 2, 3

Fig. S1 Linear absorption of 1, 2, 3 in DMF ($c = 1.0 \times 10^{-5} \text{ M}$)

3. Fluorescence lifetime of 1, 2, 3

Fig. S2 Fluorescence lifetime of 1, 2, 3 in eight solvents (Ben, DCM, THF, EtOAc, MeCN,

DMSO, DMF, H₂O)

4. Two photon absorption cross-section values of 1, 2, 3

Fig. S3 Two photon absorption cross-section values of 1, 2, 3 in 100 μ M DMSO (100 μ M, Ex = 760 nm).

5. Water solubility of 1, 2, 3

Fig. S4 Absorption spectra and plot of intensity against the concentration of 1 (a, e), 2 (b, f) and 3 (c, g) in PBS buffer (pH = 7.4), respectively. $c = 10 \mu$ M, 25 °C.

6. Photo-stability and pH- stability of 1, 2, 3

Fig. S5 The fluorescent intensities for 1, 2, 3 at varied pH values in aqueous

Fig. S6 Photo-stability of 1, 2, 3 in PBS (pH=7.2), $c = 10 \mu$ M, 25 °C

7. Cytotoxicity of 1, 2, 3

Fig. S7 Cytotoxicity data results of (A)1-3 in Hela, (B) 1-3 in A549, (C) 1-3/CPPs/DNA in Hela obtained from the MTT assay (The data are given as mean \pm SD (n = 6))

8. Laser confocal imaging of compounds 1, 2 and 3

Fig. S8 Colocalization imaging of HeLa cells stained with Lyso Tracked Blue (I, $\lambda_{ex} = 405$ nm, $\lambda_{em} = 425-475$ nm) and with **1–3** (II, $\lambda_{ex} = 488$ nm, $\lambda_{em} = 530-560$ nm) after 30 min of incubation, (III) Merged image of (I) and (II); (IV) DIC image of HeLa cells. Scale bars = 20 µm.

Fig. S9 SEM images of (1, 2, 3)compound 1-3; (4, 5, 6) complex 1-3/CPPs; (7, 8, 9) condensed DNA 1-3/CPPs in Tris-HCl buffer (5 mM, pH 7.4): (a) [1]= 10 μ M; [2]= 10 μ M; [3]= 10 μ M, [DNA]= 5 μ M.

Fig. S10 The stability of 1-3/CPPs/DNA nanoparticles in DMEM containing 10% FBS during an incubation time over 24 h. $[1-3/CPPs] = 10 \ \mu\text{M}, [DNA] = 5 \ \mu\text{M}.$

9. RFP expression of 1/CPPs; 2/CPPs; 3/CPPs, CPPs

Fig. S11 Confocal microscopy images of RFP expression of 1/CPPs; 2/CPPs; 3/CPPs, CPPs with different concentration (10 - 60μ M) in Hela cells. [RFP DNA]= 10μ g/mL

10. Transfection efficiencies of pGL-3 DNA by 1/CPPs, 2/CPPs, 3/CPPs

Fig. S12 Transfection efficiencies of pGL-3 DNA by **1/CPPs**, **2/CPPs**, **3/CPPs** at varied concentrations in Hela cells by luciferase assays. The [pGL-3 DNA] = 10 μg/mL. As controls, CPPs and Lipofectamine 2000 were also investigated.

Fig. S13 Hemolytic activity of the 1-3/CPPs/DNA

11. Photo-physical properties

Compound	solvont	2		2	Ф/0 /-	π/n s
Compound	sorvent	λ_{abs}	ϵ $/10^4$	λ _{em}	Ψ /70	1/118
1	B Renn	335 405	1213	493	36.8	1 21
	DCM	333 403	1.2 1.5	500	16 5	1.21
		220 401	1.8 1.0	400	40.3	1.08
		330 401	2.4 2.3	499	30.2	1.4/
	EtOAc	329 400	1.5 1.6	498	32.9	1.15
	MeCN	327 397	1.8 1.8	535	44.7	2.08
	DMF	330 402	1.9 2.1	535	40.6	2.02
	DMSO	330 407	2.0 2.0	542	37.9	2.23
_	H_2O	332 404	1.4 1.4	524	20.9	0.79
2	B Benn	359 415	1.1 1.5	491	26.3	1.18
	DCM	356 401	1.8 1.9	516	69	2.16
	THF	352 407	2.1 2.1	509	36.3	2.20
	EtOAc	353 405	1.8 1.9	503	26.8	1.37
	MeCN	348 399	1.9 2.0	539	74.5	2.60
	DMF	348 405	2.1 2.3	539	64.0	2.52
	DMSO	349 409	2.1 2.3	545	76.7	2.80
	H_2O	349 407	1.7 1.9	646	30.4	0.84
3	B Benn	313 424	1.6 3.1	493	38.1	1.63
	DCM	313 423	1.9 3.3	521	33.9	2.12
	THF	310 420	1.7 3.0	505	41.4	1.90
	EtOAc	310 418	1.7 3.0	503	34.0	1.88
	MeCN	310 416	1.7 3.0	547	15.4	1.65
	DMF	313 422	1.7 3.1	547	17.0	1.83
	DMSO	314 423	2.0 3.3	551	14.1	1.50
	H ₂ O	313 414	1.5 2.1	547		0.65

Table S1 Single-photon-related photophysical properties of 1, 2, 3

12. Spectra data of compounds synthesized

Fig. S16 The MS and HRMS-ESI spectrum of 1b

Fig. S19 The MS and HRMS-ESI spectrum of 1b-2

Fig. S21 ¹³C NMR (126 MHz, CDCl₃) spectrum of 2b

Fig. S22 The MS and HRMS-ESI spectrum of 2b

Fig. S25 The MS and HRMS-ESI spectrum of 1

Fig. S28 The HRMS-ESI spectrum of 2

Fig. S31 The MS and HRMS-ESI spectrum of 3

13. References

1. Z. F. Guo, H. Yan, Z.-F. Li, Z. L. Lu, Org. Bio. Chem., 2011, 9, 6788-6796.