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Synthesis of 2-methacrylamido glucopyranose (MAG) 

Successful synthesis of the saccharide monomer MAG was demonstrated by 1H NMR 

(Figure S1) taken in D2O at 400MHz.  
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Figure S1. 1H NMR spectrum of MAG in D2O.  H1(α): 5.20-5.21 ppm (d, 0.50H), 

H1(β): 4.75-4.77 ppm (d, 0.50H), H2-H6: 3.43-3.95 ppm (m, 6H), H7: 1.92 ppm (s, 

3H), H8: 5.45 ppm (s, 1H), H9: 5.68 ppm (s, 1H). 

Synthesis of the GAG-mimicking glycopolymers (pS1G1) 

Successful synthesis of pS1G1 was demonstrated by 1H NMR (Figure S2) and FT-IR 

(Figure S3), respectively. The characteristic NMR peaks of SS (H1-H2) and MAG (H3-

H7) can be clearly observed. In the FT-IR spectrum the peak at 3350 cm−1 is attributed 

to the N−H/O−H bonds of MAG, the peaks at 1630 and 1532 cm−1 are assigned, 

respectively, to the amide I band (stretch of C=O bond) and the amide II band (coupling 

of N−H bond bend and C−N bond stretch) of MAG. The peaks at 1170, 1123, 1034 and 

1007 cm−1 are assigned to the aryl SO stretch in SS. 

 



 

Figure S2. 1H NMR spectrum of pSG in D2O. 

 

 

Figure S3. FT-IR spectrum of pS1G1. 



 

Synthesis of fluorescently labeled GAG-mimicking glycopolymer (pSGF) 

In order to visualize the glycopolymer in the core-shell nanofibers and to study its 

release profile, fluorescently labeled glycopolymer, pSGF, was synthesized and 

characterized. Briefly, SS (0.1547 g, 0.75 mmol), MAG (0.1853 g, 0.75 mmol), 

FluMA (Fluorescein O-methacrylate, 0.0123 g, 0.031 mmol), CTA (0.0043 g, 0.015 

mmol), and AIBN (0.0013 g, 0.008 mmol) were dissolved in 4 mL of DMF/DIW 

mixed solvent (DMF:DIW = 1:1, v/v). The glycopolymer (pSGF) was synthesized 

using the same method as for the unlabeled polymer (see main text). Detailed 

information for pSGF is presented in Figures S4-S8.  

As shown in the 1H NMR spectrum (Figure S4), the characteristic peaks of SS, 

FluMA (H1-H2) and MAG (H3-H7) are clearly visible, indicating successful 

copolymerization of the three monomers. In the FT-IR spectrum (Figure S5), the 

characteristic absorption peaks are assigned to SS and MAG, respectively, as 

described above. In addition, the C=O stretch of the ester group at 1742 cm−1 from 

pSGF is visible, indicating the successful copolymerization of FluMA with SS and 

MAG. The UV−visible spectrum (Figure S6) shows the maximum absorbance of 

pSGF at 440−470 nm. In addition, pSGF showed maximum fluorescence intensity 

with excitation at 456 nm and emission at 524 nm (Figure S7). As shown in Figure 

S8, a GPC trace of pSGF was unimodal and the polydispersity index was low (1.21), 

suggesting that the copolymerization was well controlled. The number-average 

molecular weight (Mn) of pSGF was 7.6 kDa. 



 

Figure S4. 1H NMR spectrum of pSGF in D2O. 

  

Figure S5. FT-IR spectrum of pSGF. 

 



 

Figure S6. UV-Vis spectra of pSGF over wavelength range 400-550 nm. Maximum 

absorption pSGF at 448-478 nm. 

 

Figure S7. Fluorescence spectrum of pSGF excited at 456 nm, showing a high level of 

fluorescence intensity with maximum emission at 524 nm. 



 

Figure S8. GPC trace of pSGF. 

Table S1. Primers used in qRT-PCR. 

 

Gene Forward primer Reverse primer Product 

size (bp) 

β-Actin TTGCCGACAGGATGCA

GAAGGA 

AGGTGGACAGCGAG

GCCAGGAT 

129 

PECAM-1 CAACGAGAAAATGTCA

GA 

GGAGCCTTCCGTTCT

AGAGT 

259 

MCAM AGAACCGGGTCCACAT

TCAG 

GTCGGGTAGAAAAC

AGGGAG 

193 

 


