Electronic Supplement Information

Reversible, switchable pH-driven quaternary ammonium pillar[5]arene nanogate for mesoporous silica nanoparticles

Evelyn C. S. Santos^a, Thiago C. dos Santos^a, Tamires S. Fernandes^a, Fernanda L. Jorge^c, Vanessa Nascimento^b, Vinícius G. C. Madriaga^a, Pâmella S. Cordeiro^b, Noemi R. Checca^d, Nathalia Meireles Da Costa^c, Luís Felipe R. Pinto^c, and Célia M. Ronconi^{*a}

^aDepartamento de Química Inorgânica and ^bDepartamento de Química Orgânica, Universidade Federal Fluminense (UFF), Niterói, RJ, Brazil ^cMolecular Carcinogenesis Program, Instituto Nacional de Câncer (INCA), Rio de Janeiro, RJ, Brazil

^dCentro Brasileiro de Pesquisas Físicas (CBPF), Rio de Janeiro-RJ, Brazil.

*E-mail: cmronconi@id.uff.br

Table of contents

Scheme S1. Synthetic rote employed to obtain water-soluble P[5]A	S5			
Figure S1. ¹ H NMR spectra of: (a) compound 2 (CDCl ₃ , RT, 500 MHz) and (b) P[5]A (D ₂ O, RT, 500 MHz)	S 6			
Figure S2. ¹³ C NMR spectrum of the P[5]A (D ₂ O, RT, 75 MHz)	S7			
Figure S3. FTIR spectra of the MCM-41-COOH and its precursors	S7			
Figure S4. Raman spectra of MCM-41-COOH and MCM-41-CN	S 8			
Figure S5. N_2 Adsorption and desorption isotherms of MCM-41, MCM-41-COOH, MCM-41-COO-DOX-P[5]A, MCM-41-DOX-P[5]A, MCM-41-P[5]A and MCM-41-COO-P[5]A measured at 77 K. Adsorption = closed cycle, desorption = open cycle.	S8			
Figure S6. BJH pore size distributions of MCM-41, MCM-41-COOH, MCM-41-COO-DOX-P[5]A, MCM-41-DOX-P[5]A, MCM-41-P[5]A and MCM-41-COO-P[5]A obtained from adsorption branch.	S9			
Table S1. Textural properties of the DOX-unloaded and DOX-loaded materials	S9			
Figure S7. PXRD patterns of MCM-41 and MCM-41-COOH	S10			
Figure S8. (a) Scanning electron microscopy (SEM), (b) particle size distribution (PSD) and (c, d) transmission electron microscopy (TEM) of MCM-41				
Figure S9. TEM images of MCM-41-COOH obtained at different scale of size	S11			
Figure S10. Dynamic light scattering distribution (DLS) of (a) MCM-41 and (b) MCM-41-COOH.	S11			
Figure S11. ζ-potential curves as a function of pH (2-11) for MCM-41 and MCM-41-COOH in PBS buffer at RT	S12			
Figure S12. Acid-base titration curves of the MCM-41 and MCM-41-COOH	S12			
Figure S13. Gran plots for (a) MCM-41 and (b) MCM-41-COOH. ^{1,2} The curves were obtained by plotting the Gran function $(V_{NaOH} \times 10^{-pH})$, <i>i.e.</i> , the product of NaOH volume added and the antilog of the pH as a function of NaOH volume used in the titration (Fig. S9). The intersections of the red lines in the V_{NaOH} -axis (when $y = 0$) provide the equivalence volumes of the base necessary to completely react with all acid sites. These volumes were used to calculate the concentrations of acid sites in MCM-41 and MCM-41-COOH. The protonation constants (pK _a) for both materials were obtained from the slope of the red line	S13			

Table S2. Protonation constant (pK_a) and concentration of the acid sites in the MCM-41 and

MCM-41-COOH determined by Gran Method	S13
Figure S14. FTIR spectra of the MCM-41-P[5]A, MCM-41-COO-P[5]A, P[5]A and MCM-41-COOH	S14
Figure S15. Optimized structure of P[5]A. The structure was optimized using the Chem3D module available in Chem3DUltra	S14
Figure S16. (a) Absorption spectra of DOX at different concentrations in PBS solution (pH = 7.4) obtained at RT and (b) the standard curve of DOX obtained from the absorption spectra using the absorption maximum at $\lambda = 483$ nm. This standard curve was used to estimate the amount of doxorubicin loaded and released from the nanocarriers.	S15
Figure S17. The UV-Vis spectra of DOX released in PBS solution over time, at 37 °C for MCM-41-DOX-P[5]A at (a) $pH = 2.0$, (c) $pH = 5.5$ and (e) $pH = 7.4$; and for MCM-41-COO-DOX-P[5]A at (b) $pH = 2.0$, (d) $pH = 5.5$, (f) $pH = 7.4$	S16
Figure S18. The UV-Vis spectra of DOX released for MCM-41-COO-DOX-P[5]A after consecutive additions of acid and base to a suspension of the nanocarrier in PBS at 37 °C at (a) $pH = 5.5$, (b) $pH = 2.0$	S17
Figure S19. The UV-Vis spectra of DOX released for MCM-41-COO-DOX-P[5]A over time after addition of (a) 1.2 mmol $L^{-1} Zn^{2+}$, (b) 50 mmol $L^{-1} Zn^{2+}$ (c) 19 mmol L^{-1} citrate ³⁻ in PBS solution at 37 °C.	S18
Figure S20. MTT viability assay of MCF-7 cells treated with DOX-unloaded MCM-41-COO- $P[5]A$ for 24 and 48 h using the concentrations of 0.5, 1.0, 2.5 and 5.0 µg mL ⁻¹ of the nanocarrier.	S19

Figures, Schemes and Tables

Scheme S1. Synthetic rote employed to obtain water-soluble P[5]A.

Figure S1. ¹H NMR spectra of: (a) compound 2 (CDCl₃, RT, 500 MHz) and (b) P[5]A (D₂O, RT, 500 MHz).

Figure S2. ¹³C NMR spectrum of the P[5]A (D₂O, RT, 75 MHz).

Figure S3. FTIR spectra of the MCM-41-COOH and its precursors.

Figure S4. Raman spectra of MCM-41-COOH and MCM-41-CN.

Figure S5. N₂ Adsorption and desorption isotherms of MCM-41, MCM-41-COOH, MCM-41-COO-DOX-P[5]A, MCM-41-DOX-P[5]A, MCM-41-P[5]A and MCM-41-COO-P[5]A measured at 77 K. Adsorption = closed cycle, desorption = open cycle.

Figure S6. BJH pore size distributions of MCM-41, MCM-41-COOH, MCM-41-COO-DOX-P[5]A, MCM-41-DOX-P[5]A, MCM-41-P[5]A and MCM-41-COO-P[5]A obtained from adsorption branch.

Table S1. Textural properties of the DOX-unloaded and DOX-loaded materials.

Materials	BET surface area (m ² g ⁻¹)	BJH adsorption cumulative volume of pores V _p (cm ³ g ⁻¹)	BJH adsorption pore diameter (nm)
MCM-41	1034	1.14	2.72
MCM-41-COOH	755	0.97	2.54
MCM-41-COO-P[5]A	234	-	-
MCM-41-COO-DOX-P[5]A	188	-	-
MCM-41-P[5]A	284	_	-
MCM-41-DOX-P[5]A	144	-	-

Figure S7. PXRD patterns of MCM-41 and MCM-41-COOH.

Figure S8. (a) Scanning electron microscopy (SEM), (b) particle size distribution (PSD) and (c, d) transmission electron microscopy (TEM) of MCM-41.

Figure S9. TEM images of MCM-41-COOH obtained at different scale of size.

Figure S10. Dynamic light scattering distribution (DLS) of (a) MCM-41 and (b) MCM-41-COOH in deionized water.

Figure S11. ζ -potential curves as a function of pH (2-11) for MCM-41 and MCM-41-COOH in PBS buffer at RT.

Figure S12. Acid-base titration curves of the MCM-41 and MCM-41-COOH.

Figure S13. Gran plots for (a) MCM-41 and (b) MCM-41-COOH.^{1,2} The curves were obtained by plotting the Gran function ($V_{NaOH} \times 10^{-pH}$), *i.e.*, the product of NaOH volume added and the antilog of the pH as a function of NaOH volume used in the titration (Fig. S12). The intersections of the red lines in the V_{NaOH} -axis (when y = 0) provide the equivalence volumes of the base necessary to completely react with all acid sites. These volumes were used to calculate the concentrations of acid sites in MCM-41 and MCM-41-COOH. The protonation constants (pK_a) for both materials were obtained from the slope of the red line.

Table S2. Protonation constant (pK_a) and concentration of the acid sites in the MCM-41 and MCM-41-COOH determined by Gran Method.

Materials	рКа	Concentration of the acid sites (µmol g ⁻¹)
MCM-41	7.2	154
МСМ-41-СООН	6.1	582

Figure S14. FTIR spectra of the MCM-41-P[5]A, MCM-41-COO-P[5]A, P[5]A and MCM-41-COOH.

Figure S15. Optimized structure of P[5]A. The structure was optimized using the Chem3D module available in Chem3DUltra.

Figure S16. (a) Absorption spectra of DOX at different concentrations in PBS solution (pH = 7.4) obtained at RT and (b) the standard curve of DOX obtained from the absorption spectra using the absorption maximum at $\lambda = 483$ nm. This standard curve was used to estimate the amount of DOX loaded and released from the nanocarriers.

Figure S17. The UV-Vis spectra of DOX released in PBS solution over time, at 37 °C for MCM-41-DOX-P[5]A at (a) pH = 2.0, (c) pH = 5.5 and (e) pH = 7.4; and for MCM-41-COO-DOX-P[5]A at (b) pH = 2.0, (d) pH = 5.5, (f) pH = 7.4.

Figure S18. The UV-Vis spectra of DOX released for MCM-41-COO-DOX-P[5]A after consecutive additions of acid and base to a suspension of the nanocarrier in PBS at 37 °C at (a) pH = 5.5, (b) pH = 2.0.

Figure S19. The UV-Vis spectra of DOX released for MCM-41-COO-DOX-P[5]A over time after addition of (a) 1.2 mmol L⁻¹ Zn²⁺, (b) 50 mmol L⁻¹ Zn²⁺ (c) 19 mmol L⁻¹ citrate³⁻ in PBS solution at 37 °C.

Figure S20. MTT viability assay of MCF-7 cells treated with DOX-unloaded MCM-41-COO-P[5]A for 24 and 48 h using the concentrations of 23.25, 46.50, 116.28 or 232.56 µg mL⁻¹ of the nanocarrier.

References

- Yu, K.; Kumar, N.; Aho, A.; Roine, J.; Heinmaa, I.; Murzin, D. Y.; Ivaska, A. Determination of Acid Sites in Porous Aluminosilicate Solid Catalysts for Aqueous Phase Reactions Using Potentiometric Titration Method. *J. Catal.* 2016, *335*, 117–124.
- Shcherban, N. D.; Filonenko, S. M.; Barakov, R. Y.; Sergiienko, S. A.; Yu, K.; Heinmaa, I.; Ivaska, A.; Murzin, D. Y. New Insights in Evaluation of Acid Sites in Micro-Mesoporous Zeolite-like Materials Using Potentiometric Titration Method. *Appl. Catal. A, Gen.* 2017, *543*, 34–42.